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Problem 4: Nonlinear Dynamic State Estimation

All solutions in this report are based on a time-invariant nonlinear state space model of the
form (1). The f(.) and h(.) are multivariate functions of the state space xk, and additive
noises {wk}, {νk} are i.i.d processes independent of each other of the initial state x0. Fig. 1
is an illustration of this model.

xk+1 = f(xk) + wk,

yk = h(xk) + vk.
0 ≤ k (1)

z−1

f(.)

h(.)wk yk

vk

xk +

+

Figure 1: Block diagram of the nonlinear state space model (1).

Part A

Discussion of the Extendted Kalman Filter (EKF).

1) The linearized version of the nonlinear state-space model (1) subject to EKF is obtained
by a first order Taylor expansion:

xk+1 = f(x̂k|k) + F (x̂k|k)(xk − x̂k|k) + wk,

yk = h(x̂k|k−1) +H(x̂k|k−1)(xk − x̂k|k−1) + vk.
(2)

The F (x̂k|k) =∆ ∂f
∂x

∣∣
x=x̂k|k

and H(x̂k|k−1) =∆ ∂h
∂x

∣∣
x=x̂k|k−1

are Jacobian matrices. Both

matrices are (i) time-invariant, and (ii) stochastic. EKF does not take into account
that xk is a random variable with inherent uncertainty, and this is true when the first
two terms of the Taylor series are dominating the remaining terms.

2) The idea of EKF is to assume quasi-linear behavior for a nonlinear system. Assuming
that the process noise wk and the measurement noise vk are zero mean with covari-
ance Wk and Vk, and the initial state is x0. The time-update (3) and measurement-
update (4) are the corresponding EKF explicit recursions [1, 2] to the model (2).

x̂k+1|k = f(x̂k|k), (3a)

Pk+1|k = F (x̂k|k)Pk|kF
T (x̂k|k) +Wk. (3b)
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Pyy,k|k−1 = H(x̂k|k−1)Pk|k−1H
T (x̂k|k−1) + Vk, (4a)

Pxy,k|k−1 = Pk|k−1H
T (x̂k|k−1), (4b)

Kk = Pxy,k|k−1P
−1
yy,k|k−1, (4c)

x̂k|k = x̂k|k−1 +Kk(yk − h(x̂k|k−1)), (4d)

Pk|k = Pk|k−1 −KkPyy,k|k−1K
T
k . (4e)

Higher order EKF is defined based on second order Taylor expansion using Jacobian
and Hessian matrices. EKF analysis here are based on (3) and (4).

3) Block diagram of EKF is represented in Fig. 2. The dashed blue rectangular is the
time-update module. It takes the process noise variance Wk, the mean x̂k−1|k−1 and
covariance Pk−1|k−1 of the previous estimation, then calculates predicts the mean x̂k|k−1

and covariance Pk|k−1 of the next state using Eq. (3). The dashed red rectangular is
the measurement-update module. It takes the output of time-step along with the new
measurement yk, and the measurement noise variance Vk, then calculates the mean x̂k|k
and covariance Pk|k of the next system state using Eq. (4).

yk
Kk = Pxy,k|k−1P

−1
yy,k|k−1,

x̂k|k = x̂k|k−1 +Kk(yk − ŷk|k−1),
Pk|k = Pk|k−1 −KkPyy,k|k−1K

T
k .

Pyy,k|k−1 = H(x̂k|k−1)Pk|k−1H
T (x̂k|k−1) + Vk,

Pxy,k|k−1 = Pk|k−1H
T (x̂k|k−1),

ŷk|k−1 = h(x̂k|k−1).

z−1

x̂k|k−1 = f(x̂k−1|k−1)
Pk|k−1 = F (x̂k−1|k−1)Pk−1|k−1F

T (x̂k−1|k−1) +Wk

x̂k|k
Pk|k

WkVk

Pyy,k|k−1, Pxy,k|k−1

ŷk|k−1

−

x̂k−1|k−1Pk−1|k−1Pk|k−1

x̂k|k−1

Figure 2: EKF block diagram. Time-update and measurement-update blocks are represented
by blue and red dashed rectangular.

The measurement variable directly influences the estimated state mean x̂k|k and max-
imum covariance Pk|k, therefore all variables are dependent of the measurement recur-
sively, except the measurement noise vk and process noise wk.

The system will be independent of measurement in case of high measurement noise
covariance Vk. In this case Kalman gain Kk goes to zero, and the estimated state
will depend on predicted state x̂k|k only. It is obvious that a measurement with high
uncertainty is not valuable and KF reduces the weight of the measured (observed)
value in consequence.
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4) Kalman’s original derivation did not apply Bayes’ rule and does not require the ex-
ploitation of any specific error distribution information beyond the mean and covariance
[3]. However, the filter yields the exact conditional probability estimate in the special
case that all errors are Gaussian. KF can be derived as an application of Bayes’ rule
under the assumption that all estimates have independent, Gaussian distributed errors
[4].

5) The innovation process can be rewritten as yk− ŷk|k−1. It is the difference between the
actual measurement yk and its estimated prediction, based on the system model and
previous measurement ŷk|k−1. The first two moments of the innovation signal is known.
The mean is zero. The covariance matrix of innovation based on the linearized model
is given by (4a). If the noise assumed to be Gaussian, then the innovation sequence is
zero-mean, white (uncorrelated), with covariance equal to the measurement prediction
covariance, and has a Gaussian distribution.

Part B

Discussion of the Cubature Kalman Filter (CKF).

1) Bayesian filtering aims to compute the posterior density p(xk|y1:k) of the state xk at
each time step k, given the history of the measurement up to the time step k and
the prior density p(xk−1|y1:k−1) [2]. The recursions start from the initial distribution
p(x0), then applying two step recursive algorithm: times-update (5) which is derived by
Chapman-Kolmogorov equation, and measurement-step (6) which is derived by Bayes’
rule.

p(xk|y1:k−1) =

∫
p(xk|xk−1)p(xk−1|y1:k−1) dxk−1 (5)

p(xk|y1:k) =
1

ck
p(yk|xk)p(xk|y1:k−1) (6a)

ck =

∫
p(yk|xk)p(xk|y1:k−1) dxk (6b)

The integrals of Eq. (5) and (6b) need to be computed in the general Bayesian filtering.
However, from practical perspective they are intractable [5]. Notable exceptions in
which optimal solution is tractable are including: Linear-Gaussian dynamic system
(KF [3]), discrete-valued state-space with a fixed number of states (Hidden-Markov
model filter [6]), and Benes type of non-linearity [7].

2) For the case of Gaussian state-spaces, the predictive PDF p(xk|y1:k−1) and the filter
likelihood PDF p(xk|y1:k) are both assumed to be Gaussian. In the time-update step,
the p(xk|y1:k−1) is N (x̂k|k−1, Pk|k−1). Where the mean and covariance are defined by
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the statistical expectation operator E[.] as following.

x̂k|k−1 = E[xk|y1:k−1] = E[f(xk−1) + wk|y1:k−1] (7a)

= E[f(xk−1)|y1:k−1] (7b)

=

∫
f(xk−1)p(xk−1|y1:k−1) dxk−1 (7c)

=

∫
f(xk−1)×N (xk−1|x̂k−1|k−1, Pk−1|k−1) dxk−1 (7d)

It is possible to write (7a) from (7b) by assuming that the process noise wk ∼ N (0,Wk)
is zero-mean and uncorrelated with the past measurements.

Pk|k−1 = E[(xk − x̂k|k−1)(xk − x̂k|k−1)T |y1:k−1] (8a)

= E[(f(xk−1) + wk−1 − x̂k|k−1)(f(xk−1) + wk−1 − x̂k|k−1)T |y1:k−1] (8b)

= E[f(xk−1)fT (xk−1) + f(xk−1)wT
k−1 − f(xk−1)x̂Tk|k−1

+ wk−1f
T (xk−1) + wk−1w

T
k−1 − wk−1x̂

T
k|k−1

− x̂k|k−1f
T (xk−1)− x̂k|k−1w

T
k−1 + x̂k|k−1x̂

T
k|k−1|y1:k−1]

(8c)

=

∫
f(xk−1)fT (xk−1)×N (xk−1|x̂k−1|k−1, Pk−1|k−1) dxk−1

− x̂k−1|k−1x̂
T
k−1|k−1 +Wk−1

(8d)

In the measurement-update step, the p(yk|y1:k−1) is N (ŷk|k−1, Pyy,k|k−1).

ŷk|k−1 = E[yk|y1:k−1] = E[h(xk) + vk|y1:k−1] (9a)

= E[h(xk)|y1:k−1] (9b)

=

∫
h(xk)×N (xk|x̂k|k−1, Pk|k−1) dxk (9c)

Pyy,k|k−1 = E[yk − ŷk|k−1)(yk − ŷk|k−1)T |y1:k−1] (10a)

= E[(h(xk) + vk − ŷk|k−1)(h(xk) + vk − ŷk|k−1)T |y1:k−1] (10b)

=

∫
h(xk)hT (xk)×N (xk|x̂k|k−1, Pk|k−1) dxk − ŷk|k−1ŷ

T
k|k−1 + Vk (10c)

Pxy,k|k−1 = E[(xk − x̂k|k−1)(yk − ŷk|k−1)T |y1:k−1] (11a)

= E[(xk − x̂k|k−1)(h(xk) + vk − ŷk|k−1)T |y1:k−1] (11b)

= E[xkh
T (xk) + xkv

T
k − xkŷTk|k−1 − x̂k|k−1h

T (xk)

− x̂k|k−1v
T
k + x̂k|k−1ŷ

T
k|k−1|y1:k−1]

(11c)

=

∫
xkh

T (xk)×N (xk|x̂k|k−1, Pk|k−1) dxk − x̂k|k−1ŷ
T
k|k−1 (11d)
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Therefore, the conditional Gaussian density of the joint state and the measurement is:

p

([
xk
yk

]∣∣∣∣ y1:k−1

)
= N

((
x̂k|k−1

ŷk|k−1

)
,

(
Pk|k−1 Pxy,k|k−1

P T
xy,k|k−1 Pyy,k|k−1

))
(12)

So, the Bayesian filter computes the posterior density p(xk|yk) from Eq. (12) as:

p(xk|yk) = N (xk|x̂k|k, Pk|k) (13)

Upon receiving the new measurement yk, the KF equations will be used to find the
posterior density mean x̂k|k and convariance Pk|k:

x̂k|k = x̂k|k−1 +Kk(yk − ŷk|k−1), (14a)

Pk|k = Pk|k−1 −KkPyy,k|k−1K
T
k , (14b)

Kk = Pxy,k|k−1P
−1
yy,k|k−1. (14c)

The main challenge and the heart of the Bayesian filter is to compute Gaussian weighted
integrals of (7d), (8d), (9c), (10c), and (11d). They are all in a combination of non-
linear function and a Gaussian PDF. It is not easy to derive this integral analytically
for general non-linear state space model, for a linear state space model:

xk+1 = Fkxk + wk, (15a)

yk = Hkxk + vk. (15b)

The time-update step derivations can be rewritten as:

x̂k|k−1 = E[Fk−1xk−1 + wk−1|y1:k−1] = Fk−1E[xk−1|y1:k−1]

= Fk−1x̂k−1|k−1

(16)

Pk|k−1 = E[(xk − x̂k|k−1)(xk − x̂k|k−1)T |y1:k−1]

= E[(Fk−1xk−1 + wk−1 − Fk−1x̂k−1|k−1)(Fk−1xk−1 + wk−1 − Fk−1x̂k−1|k−1)T |y1:k−1]

= E[(Fk−1xk−1)(Fk−1xk−1)T + (Fk−1xk−1)wT
k−1 − (Fk−1xk−1)(Fk−1x̂k−1)T

+ wk−1(Fk−1xk−1)T + wk−1w
T
k−1 − wk−1(Fk−1x̂k−1|k−1)T

+ (Fk−1x̂k−1|k−1)(Fk−1xk−1)T + (Fk−1x̂k−1|k−1)wT
k−1

− (Fk−1x̂k−1|k−1)(Fk−1x̂k−1|k−1)T |y1:k−1]

= E[(Fk−1xk−1 − Fk−1x̂k−1|k−1)(Fk−1xk−1 − Fk−1x̂k−1|k−1)T + wk−1w
T
k−1|y1:k−1]

= Fk−1E[(xk−1 − x̂k−1|k−1)(xk−1 − x̂k−1|k−1)T |y1:k−1]F T
k−1 + E[wk−1w

T
k−1|y1:k−1]

= Fk−1Pk−1|k−1F
T
k−1 +Wk−1

(17)

ŷk|k−1 = E[Hkxk + vk|y1:k−1] = HkE[xk|y1:k−1]

= Hkx̂k|k−1

(18)
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And similar to derivation of (17), the measurement-update step can be rewritten as:

P̂yy,k|k−1 = E[(yk − ŷk|k−1)(yk − ŷk|k−1)T |y1:k−1]

= E[(Hkxk + vk −Hkx̂k|k−1)(Hkxk + vk −Hkx̂k|k−1)T |y1:k−1]

= HkPk|k−1H
T
k + Vk

(19)

P̂xy,k|k−1 = E[(xk − x̂k|k−1)(yk − ŷk|k−1)T |y1:k−1]

= E[(xk − x̂k|k−1)(Hkxk + vk −Hkx̂k|k−1)T |y1:k−1]

= E[(xk − x̂k|k−1)(Hkxk −Hkx̂k|k−1)T |y1:k−1]

= E[(xk − x̂k|k−1)(xk − x̂k|k−1)T |y1:k−1]HT
k

= Pk|k−1H
T
k

(20)

Now that the predicted density (12) is derived for linear state space. The KF equations
are proven to be the same as the conditional distribution of Gaussian variables xk and
yk for linear Gaussian systems [2].

Lemma 0.1 If the random variables x and y have the joint Gaussian probability dis-
tribution: (

x
y

)
∼ N

((
a
b

)
,

(
A C
CT B

))
(21)

The marginal distribution of x and y are given as:

x ∼ N (a,A), (22a)

y ∼ N (b, B), (22b)

x|y ∼ N (a+ CB−1(y − b), A− CB−1CT ), (22c)

y|x ∼ N (b+ CTA−1(x− a), B − CTA−1C). (22d)

The marginal distribution (22) is proven in Ch. 2 of [8]. Now, the idea is to write
probability density function of variable x from Eq. (21) and consider y as a constant
variable to find mean and covariance of p(x|y).

Using the (16), (17), (18), (19), and (20) as the joint Gaussian PDF of (12), gives
a = x̂k|k−1, b = ŷk|k−1, A = Pk|k−1, B = Pyy,k|k−1, and C = Pxy,k|k−1. The marginal
distribution formula (22) gives the KF equations:

xk ∼ N (x̂k|k, Pk|k). (23a)

x̂k|k = x̂k|k−1 + Pxy,k|k−1P
−1
yy,k|k−1[yk − ŷk|k−1],

= x̂k|k−1 +Kk[yk − ŷk|k−1].
(23b)

Pk|k = Pk|k−1 − Pxy,k|k−1P
−1
yy,k|k−1P

T
xy,k|k−1,

= Pk|k−1 −KkPyy,k|k−1K
T
k .

(23c)

Where (23) is rewritten in the form of standard measurement-update KF (4) by defining
Kalman gain as KkPxy,k|k−1P

−1
yy,k|k−1. The x̂k|k−1 and Pk|k−1 are the predicted variables

from the time-update step (16) and (17).
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3) Fig. 3 is the block diagram of CKF. Similar to the EKF block diagram, the filter is
taking the previous state estimate mean x̂k−1|k−1 and covariance Pk−1|k−1 to calculate
the new estimate state mean xk|k and covariance Pk|k.

In the time-update state (illustrated with dashed blue rectangular), the sigma-points
ξ(i) are derived based on spherical-radial cubature rules [5]. Then the sigma points will
propagate in the system f(.), and used for calculation of mean ˆxk|k−1 and covariance
Pk|k−1 of the predicted state xk|k−1.

In the measurement-update state (illustrated with dashed red rectangular), the prop-
agated sigma-points ξ(i) are taken to derive the new sampling points using the square
root matrix Sk|k−1. The propagated sigma-points in the system h(.) will be used for
calculation of the mean ŷk|k−1, covariance Pyy,k|k−1, and cross covariance Pxy,k|k−1. On
the top left of the Fig. 3, the KF block takes the new measurement, with the first two
moments of predicted measurement and it cross covariance with the predicted state to
calculate the best state estimate of the mean x̂k|k and covariance Pk|k using represented
analytic formulas of standard KF.

yk
Kk = Pxy,k|k−1P

−1
yy,k|k−1

x̂k|k = x̂k|k−1 +Kk(yk − ek)
Pk|k = Pk|k−1 −KkPyy,k|k−1K

T
k

z−1

Pk−1|k−1 = Sk−1|k−1S
T
k−1|k−1,

x
(i)
k−1|k−1 = Sk−1|k−1ξ

(i) + x̂k−1|k−1,

ξ(i) =
√

m
2
ei, ω(i) = m−1.

Pk|k−1 = Sk|k−1S
T
k|k−1,

x
(i)
k|k−1 = Sk|k−1ξ

(i) + x̂k|k−1.

x
(1)
k−1|k−1

x
(2)
k−1|k−1

...

x
(m)
k−1|k−1

x̂
(1)
k|k−1

x̂
(2)
k|k−1

...

x̂
(m)
k|k−1

x
(i)
k−1|k−1

f(.)

...

x̂k|k−1 =
∑
ω(i)x̂

(i)
k|k−1,

Pk|k−1 =
∑
ω(i){x̂(i)

k|k−1}{x̂
(i)
k|k−1}T

−x̂k|k−1x̂
T
k|k−1 +Wk.

x̂
(i)
k|k−1

ω(i)

x
(1)
k|k−1

x
(2)
k|k−1

...

x
(m)
k|k−1

x
(i)
k|k−1

ŷ
(1)
k|k−1

ŷ
(2)
k|k−1

...

ŷ
(n)
k|k−1

h(.)

...

ŷk|k−1 =
∑
ω(i)ŷ

(i)
k|k−1,

Pxy,k|k−1 =
∑
ω(i){x̂(i)

k|k−1}{ŷ
(i)
k|k−1}T

−x̂k|k−1ŷ
T
k|k−1,

Pyy,k|k−1 =
∑
ω(i){ŷ(i)

k|k−1}{ŷ
(i)
k|k−1}T

−ŷk|k−1ŷ
T
k|k−1 + Vk.

Pxy,k|k−1, Pyy,k|k−1 Pk|k−1, x̂k|k−1

ŷ
(i)
k|k−1

x
(i)
k|k−1

x̂k|k
Pk|k

WkVk

ŷk|k−1

−

x̂k−1|k−1Pk−1|k−1 x̂k−1|k−1

Figure 3: CKF block diagram. Time-update and measurement-update blocks are represented
by blue and red dashed rectangular.

EKF and CKF filters aim to apply the extension form of the KF to nonlinear systems.
However, EKF utilizes the first two moments of the state in its update rule. It is simple
and offers a number of important practical benefits, however it does not guarantee the
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convergence and derivation of its Jacobian matrices might not be trivial. On the other
hand, CKF uses sampling points to find the most accurate solution of Bayesian filter.
The number of sampling points are not significantly increase the computational cost in
comparison with EKF. Fig. 3 and Fig. 2 will be used in the next part for comparison
between EKF and CKF.

4) The main difference between CKF and UKF is the way that they generate deterministic
weighted sigma-points sigma-points ξ(i) [5, 4]. UKF considers a symmetric prior PDF
within which the Gaussian is a special case, while CKF is an approximation of Bayesian
filter under the Gaussian domain. Both algorithms can be used with discontinuous
transformations.

• Assuming that the n-dimensional prior expected state xk having mean of x̂k|k and
covariance of Pk|k. UKF and CKF both use a deterministic weighted sigma-points
ξ(i). The weighted sigma points of (24) are derived analytically from spherical-
radial cubature rules based on the third-degree spherical-radial rule m = 2n. A
third order characteristic of the cubature integration rule is exact to determines
the mean for third order polynomials. But, it is exact to determine the covariance
for the first order polynomials.

ξ(i) =

√
m

2
ei, (24a)

ω(i) =
1

m
, i = 1 : m. (24b)

On the other hand, the unscented transform of UKF algorithm should only satisfy
the two moment-matching conditions (25). The PDF is assumed to be symmetric,
so the odd moments are zero (similar to Gaussian). The weighted sigma-points in
this approach are not unique, and it offers enough flexibility to allow information
beyond mean and covariance to be incorporated into the set of sigma points. In
this line of thinking, weights of unscented transform can be negative as long as
the moment matching equations (25) hold.

Also, it is important to mention that UKF can be seen as a generalization of the
CKF , because CKF is just a UKF with specific parameters [2]. The weighted
sigma points of (26) is one example of unscented transform m = 2n+1 [4]. Where
ω̄ is a tuning parameter and i ∈ {1, . . . , n}.

x̂k|k =
m∑
j=1

ωjξ
(j), (25a)

Pk|k =
m∑
j=1

ωi(ξ
(j) − x̂k|k)(ξ(j) − x̂k|k)T ξ(j). (25b)
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ξ(0) = x̂k|k, ω(0) = ω̄, (26a)

ξ(i) = x̂k|k +

√
n

1− ω(0)
Px|x, ω(i) =

1− ω(0)

2n
, (26b)

ξ(i+n) = x̂k|k −
√

n

1− ω(0)
Px|x, ω(i+n) =

1− ω(0)

2n
. (26c)

• For the given examples, the third order spherical-radial cubature rules (24) re-
quires m = 2n sigma-points, and the unscented transform requires (24) m = 2n+1
sigma points. Although they look similar, but they result in a different set of
points.

Part C

Comparison of the CKF with the EKF.

1) Fig. 2 and Fig. 3 are the block diagrams for EKF and CKF algorithms. The main
difference between the two filters is the way that, they calculate first two moments of
predicted state x̂k|k−1 and measurement ŷk|k−1 the first two moments of the previous
state. The same KF equations (14) are used in both filters to find the best kth state
estimate of the mean and covariance from yk measurement.

EKF utilizes the first two moments of the state in its update rule, and propagate
the single mean point through the system model f(.) to find the mean. It is simple
and successful to compromise between computational complexity and representation
flexibility, when the mean and covariance are linearly transformable quantities with
linear approximation of the system (Jacobian). The estimated mean and covariance
from EKF algorithm are accurate for first order polynomials, so it is reliable when the
error propagation can be well approximated by linear functions. Like the original KF
[3], EKF does not require the exploitation of any specific error distribution information
beyond the mean and covariance.

CKF is a more accurate for the mean x̂k|k(3rd order polynomials). It assumes the
noise to be in Gaussian form, then exploits the properties of highly efficient numerical
integration methods known as cubature rules, to calculate the Bayesian filter inte-
grals: (7d), (8d), (9c), (10c), and (11d). It produces weighted sigma-points ξ(i) using
spherical-radial cubature rules based on the third-degree spherical-radial rule. The
mean is exact for thirst order polynomials (better than EKF), while the covariance is
exact for the first order polynomial.

2) CKF estimated mean is exact for the third order polynomials, and it does not require
the model to be continuous or diffierentiable. It is better to be used for highly nonlinear
functions. However EKF is a better choice when the system is almost linear. EKF is
extendable to higher orders with Hessian matrices (third term of the Taylor series),
but calculation of Jaboian and Hessian can be a very difficult and error-prone process
[4, 9].
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3) Although UKF and CKF are choosing sigma-points in a fundamentally different way,
their computation cost is almost. The most expensive operations of these filters is in
the calculation of the matrix square root and the outer product required to compute
the covariance of the projected sigma-points. Matrix square root should be calculated
using numerically efficient and stable methods such as the Cholesky decomposition,
[8, 10].

In this line of thinking, the computational cost of the UKF and CKF operations are
in the same order O(n3), which is the same evaluations as evaluation the n×n matrix
multiplications needed to calculate the EKF predicted covriance. More complicated
versions of CKF e. g. Gauss-Hermite quadrature are computationally expensive as the
number of points scales geometrically with the number of dimension [4].
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