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1 EXECUTIVE SUMMARY

(Classification is a field of machine learning that has to do with grouping data based on a
specific criteria. This is also referred to as supervised learning. Technology has made data
collection easy and with the abundance of data that is now available for usage, classification
methods are becoming more important for decision making. While, we use complex algo-
rithms to classify items, it is something that we humans do naturally. In machine learning,
classification algorithms have very wide usage and can be applied to many daily life prob-
lems. Image classification, Music identification, Event classification and Speech tagging are
some of the important application of classification algorithms. Many simple and complex
classification algorithms such as Linear Regression, Perceptron, Naive Bayes Classifier, De-
cision Trees, Neural Networks and Support Vector Machines are already used extensively in
various fields of our daily life. While, these techniques have enriched our ways of work, there
are many challenges that are still unsolved. High mean accuracy, availability of labeled data
and dimensional distribution of data are some of the main challenges in this field.

From a user point of view, achieving a high mean accuracy is always the first preference.
The cost of using classification algorithms can only be justified if we achieve a high mean
accuracy. For example, predicting a payment system failure for a bank, with high accuracy
could save a bank big amount of money and human resource time but, the challenge in this
type of problems is the availability of labeled data. There are many such scenarios where
accurate classification or prediction is required but it is not achievable for various reasons.
Similarly, it is not always possible to have many labeled data point for training classification
model thus we require classification algorithms that can deal with small number of labeled
data and returns a high mean accuracy.

Another challenge with classification algorithms is the manifold assumption. Classifica-
tion algorithms assume that data lies in the low manifold and hence fails to achieve high
mean accuracy when used with a manifold distributed data. The objective of our research is
to optimise or extend existing methods so that they can achieve high mean of accuracy using
small number of labeled observations. We are also intending to introduce new methods that
can classify a manifold distributed data with small number of labeled observations and still
achieve high mean of accuracy.

Our research will focus mainly on semi-supervised learning. To achieve the overall re-
search objectives, three different categories of classification will be discussed in detail in this
report. This will be followed by our research and contribution to the mentioned fields.

1. Supervised learning, which is classification of new observations using full labeled ob-
servations.

2. Unsupervised learning or clustering, is classification of observations that has no label
information.

3. Semi-supervised learning, which is classification of new observation using limited num-
ber of labeled observations.

The intention is to build over the existing state of art and where applicable come up with
new ideas and algorithms.



2 INTRODUCTION

Classification is allocating objects in to classes and groups [14]. Classification or supervised
learning supposes a relationship R between elements of a set E. Classification remained the
work of natural scientist for long and was used by them to classify different organism in to
different classes. Libraries used various classification methods to classify books in to various
groups. While classification was used by natural scientists in libraries, it got more attraction
in 1960s when a Belgian and Polish mathematician [I] published a paper on the subject of
classification. This was followed by a book from Birkhoff [2]. The Introduction of Numerical
Taxonomy by P. H. Sneath and R. R. Sokal [33] followed suit. Picking up momentum in 1970s,
classification emerged as one of the most researched and valuable field of mathematics and
statistics. Later, machine learning gave classification a new boost and introduced practical
usage of classification outside mathematics and statistics. Now, classification has a very
wide usage in our day to day life. Simple tasks as classification of product to product groups
or complex tasks like comparing different traits of organism in taxonomy, use classification
algorithms. Machine learning also introduced many new usages for these algorithms. For
example, assigning an email to spam or not a spam class or diagnosing a patient’s disease
based on observed data from other patients.

Classification is a form of pattern recognition and is also referred to as supervised learning.
An algorithm that can classify is called classifier. While we have come a long way with respect
to improving the classification algorithm’s performance, we still have many challenges in
this field. Mean accuracy of classification, unavailability or partial availability of labeled
data and the manifold distribution of data are some of the challenges that we still need
to resolve. Normally, a classifier’s performance is partially dependent on the accuracy and
availability of labeled data. The bigger the size of labeled training dataset, the better the
classifier. Unfortunately, we do not have labeled data available in most of the scenarios or
it is too expensive to label. Hence, there is a big demand for classifier that can classify
using small number of labeled observation with a high mean accuracy. In machine learning,
classification or supervised learning is about learning a mapping function between input and
output variables. Imagine an input variable X and an output variable Y, we map a function
between input and output as per below.

Y = f(X) (1)

The objective in here is approximation of the mapping function f. If the mapping function
f is well approximated; an output variable Y can be predicted with high accuracy based on
new input X. The process is called supervised learning as the mapping function is super-
vised to learn using training data. The learning only stops when the performance reaches a
specific acceptable threshold. Supervised learning is divided in to two types; Classification
and Regression. The difference between these two methods is in the output they predict.
Classification is prediction of categorical variables while Regression is prediction of numerical
variables.

Contrary to supervised learning, in unsupervised learning there is no output variable Y.
Input variable X is used to understand the underlying data structure followed by clustering
the same data in to groups. In semi-supervised learning, we have input variable X and very



limited instances of output variable Y. Semi-supervised learning sits between supervised
learning and unsupervised learning. The input variable X and available label Y is used
alongside the unlabeled observations to determine a classifier function. A good example of
semi-supervised learning is labeling photos in an archive. In such archives, some photos
are labeled and majority are unlabeled. It is quite expensive and time-consuming to la-
bel unlabeled observations and hence most of machine learning algorithms fail in this type
of classification. This is why semi-supervised learning is considered more challenging than
supervised and unsupervised learning. Taking this as a challenge, our research and contri-
bution will be mainly in the area of semi-supervised learning. Our focus will be to optimise
existing techniques or introduce new semi-supervised techniques.

3 LITERATURE REVIEW

The literature review will begin with the review of current state of supervised, unsupervised
and semi-supervised learning. This will be followed by a detail review of each mentioned
method. As our research focus is semi-supervised learning, the semi-supervised section will
include our research and contributions as well. We are specifically looking at the graph
based approaches to semi-supervised learning. Research on graph based semi-supervised
learning has shown promising results. These methods use a concept called random walk over
graph. Graph based methods are good with classification of a manifold distributed data as
well as classification using very small number of labeled observation due to the way they
calculate the distance. The aim of studying graph based methods is to discover the reasons
for graph based methods high mean accuracy using small number of labeled observations.
Follow on from this study, focus will be mainly on image classification. Image classification
is a challenging field of research. While image classification / identification is a very active
area of research and convolutional networks have performed very well, there has been no
major break throughs in this area as yet.

3.1 Supervised Learning

In supervised learning, model learns from labeled datasets and then apply that learning to
label a new data point. Supervised learning [3] is divided in to two types i.e. Classification
and Regression. The difference between classification and regression is the type of output.
(Classification predicts a class label of an unlabeled observation while regression predicts a
numerical label. The objective is to come up with a mapping from x to y given a training set
that is made up of (z;,y;). y; is the label of z;. The function that is created using training
set can be evaluated through prediction of the same function on a test set. Supervised
learning algorithms are generally divided in to two families i.e. generative and discriminative
algorithms. The generative models [16, 24] learn the joint probability distribution p(z,y)
while discriminative models learn the conditional probability distribution p(z|y) [6].

In discriminative models, to predict label y from a new observation x, we have to evaluate
the class using below equation. The equation choses the most likely class for y given .

f(x) = arg;naxp(ylw) (2)



We know from Bayes rule that p(y|z) = %. Replacing the p(z|y) in the discriminative

model equation with Bayes rule will result in to below equation. As the equation is only
interested in arg max, denominator is constant, and so can be disregarded when identifying
the argmax.

fz) = arg;ﬂ&Xp(MfU)}?(ﬂJ) (3)

This is the equation used in generative model. In discriminative models, conditional prob-
ability distribution p(z|y) is used to model the class boundary while the joint probability
distribution models the actual distribution of each class. Given a label y, generative models
can generate its respective x and that is why they are called generative models.

3.2 Unsupervised Learning

Unsupervised learning helps in identification of unknown structures in data and does not
require data to have labels. There are many different unsupervised methods available but
the most common one is clustering. Clustering is to group or segment dataset based on
common attributes or behaviours [25], B6]. Unsupervised learning is mainly used to estimate
density in a dataset [I5]. As mentioned earlier, supervised methods use the information
of conditional probability distribution p(z|y) where y is the label and x is the input data;
unsupervised learning works based on apriori probability distribution p(x).

3.3 Semi-Supervised Learning

Semi-supervised learning [11] also called (SSL) is a type of learning that lies between super-
vised and unsupervised learning. Semi-supervised learning uses both labeled and unlabeled
data with the intent to form higher accuracy models when compared to those using only
labeled data [3| [I1]. Mathematically, it can be presented as, X = (z;);c[,) which is divided
in to labeled data X; = (xy,....,2;) that has labels Y; = (yi,....,) and unlabeled data
X. = (x;+1,....,21+,) where no label information is provided. One of the questions that is
normally asked regarding semi-supervised learning is, does using the labeled and unlabeled
data provide additional accuracy when compared to using the labeled data alone? In short,
the answer is yes but it is very strongly correlated to the distribution of labeled dataset and
its relevance to the classification problem it is trying to solve [6]. In other words, the p(z)
from unlabeled dataset should be useful in inference of p(y|z) from labeled dataset for a semi-
supervised method to perform better than the supervised method. If above is not the case,
semi-supervised learning may degrade the mean accuracy of classification. Semi-supervised
learning algorithms share some common assumptions [32]. The methods can provide high
accuracy only when these assumptions hold true. Some of the common assumptions used by
semi-supervised learning is listed down below.

1. Smoothness Assumption: If two observations x; and x5 are close to each other then so
should be their respective labels y; and ys.

2. Cluster Assumption: If two points x; and x5 share the same cluster then most probably
they have same class.



3. Manifold Assumption: High dimensional data lies on a low dimensional manifold.

As mentioned earlier, most of the semi-supervised methods work only if all of the above
mentioned assumptions hold true. Graph based methods, explained in section have the
flexibility and capacity to avoid one or more of these assumptions and still achieve a high
mean accuracy of classification. This is also our active area of research. Our existing work
on this subject which is ready for publication is presented at the end of section [3.3.2]

3.3.1 Self-Learning

The idea of using unlabeled observations along with labeled observations to improve predic-
tion is not new [29, [34]. There was always a need to use the available unlabeled observations
to enrich training or in other words improve mean accuracy of classification. This desire has
led researchers to use the unlabeled observations in many different ways. Self-learning [35] [19]
is also referred to as self-training, self labeling in different texts [6], is a very simple approach
to use unlabeled observations. Self-training is a wrapper algorithm that can use different
supervised learning methods. Self-training is initiated using a labeled dataset and model
is trained using the labeled dataset. The model is then applied to some of the unlabeled
observations and label is predicted. The prediction is retained which is then used to train
the model again and the process is repeated until all the unlabeled observations are labeled.
The accuracy of self-learning is dependent on the supervised algorithm used and criteria
adopted. The criteria could be either risk minimization [I8] or margin maximization [20].
In margin maximization, the decision boundary is extended due to unlabeled observations.
Self-learning does not guarantee an improvement in accuracy of the model and hence con-
tradicts the whole objective of using unlabeled observations. We performed an experiment
on Iris dataset to validate the fact that self-learning with margin maximization does not
guarantee an improvement in classification mean accuracy. We choose kNN as the super-
vised method in our experiment. kNN algorithm forms a majority vote between the k£ most
similar observations and an unseen observation. Similarity is defined by a distance metric
such as Euclidean distance.

kNN (dataset, sample)
{

1. Go through each item in my dataset and calculate the distance from that data item to
my specific sample.

2. Classify the sample as the majority class between K samples in the dataset having
minimum distance to the sample.

}

If we consider X as the matrix of features for an observation and Y is the class label, kNN
looks at k (a positive integer) and estimates the probability of it belonging to class j for a
test observation xg

Pr(Y =X =) = 1 3 15 = J) (1
€N



Table 1: Impact of unlabeled data points on mean accuracy of classification - Iris dataset

#rr OrracC FHup FHETR QETRAOCC

40 0.963 20 60 0.944
20 0.944 20 40 0.973
25 0.95 25 50 0.95

15 0.958 15 30 0.925
30 0.944 30 60 0.944
40 0.95 30 70 0.975

Self-learning kNN [I3] involves predicting class of unlabeled observations. A model is
trained using kNN and a training set TR. Unlabeled set UD is then labeled using the pre-
dicted class. The unlabeled points that have high confidence of prediction are then added to
training set TR along with their predicted class. The extended training set ETR = TR+UD
is then used to classify other unlabelled points. See Table [I] for the impact of adding un-
labeled points on mean accuracy of prediction using KNN. Mean accuracy of prediction is
calculated before and after the addition of unlabeled points. Mean accuracy is calculated
by taking the mean of accuracy of random observations of 30 different iterations. It is very
obvious from the results that self-learning may or may not improve mean accuracy [27].

3.3.2 Graph Based Methods

Research in graph based methods is highly active area in semi-supervised learning. A graph
is constructed where each node in the graph is associated to a data point and edges between
nodes exist if the associated pair of points are neighbours (with respect to some distance
threshold). The edges of the graph are weighted to indicate the inverse distance (or simi-
larity) between the associated two data points. The distance between any two points in the
data is calculated by minimizing the path distance over all possible paths connecting the
two points. Graph distance is used as an approximation of geodesic distance between two
points on a manifold. Let’s assume a graph G(V, E) where V is the set of graph vertices
and E is the set of graph edges. Weight is represented by w(e;;) for each e;; € E. The edge
weight w(e;;) represents the local similarity between points ¢ and j. The weight matrix of
this graph G is defined by

w(e;;) if e;; € E, 0 otherwise (5)

As described in section semi-supervised learning is mostly useful when we have a
high proportion of unlabeled observations. At times the cost of labeling observation is too
high or requires a lot of effort. Thus it makes sense to use unlabel observations. We need
a high proportion of unlabeled observations, to be able to use them to increase accuracy
of classification. This is due to the fact that unlabeled observations contain less informa-
tion as compared to labeled ones. Processing of unlabeled observations is computationally
expensive due to high volumes. This in turn requires faster semi-supervised algorithms to
process the large number of unlabeled data. Graph based algorithms use graphs to calcu-
late the similarity between two data points. The graph creation process is computationally
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expensive [4]. Tt is not feasible to create a graph for each labeled observation to identify the
neighbourhood. Thus most of the graph based algorithms available today struggle with the
cost of processing large volume of data [26]. This means graph based methods are hard to
implement and not efficient in real life problems. As part of solving this problem we have
introduced a new method of using graph that is very light on compute cost while still takes
advantage of graph based similarity calculation. We have called our method cgkNN which
is explained in detail in section [£.1]

cgkNN works with small number of labeled observations and produces high mean ac-
curacy with lower computational cost. Our method can be classified as a graph based
semi-supervised learning method. Graph based algorithms build graphs whose nodes are
labeled and unlabeled data points. Labeled data points are used to spread information to
unlabeled data points. In these methods, graphs g = (V, E') where V represent a node and
E an edges is used to represent the geometry of the data. E represents similarity between
two edges. Similarities are shown using a weight matrix W.

3.4 Image Classification

Image classification refers to processes that are used to identify objects within an image or
classify image in to a group. Huge amount of data is getting generated daily using image
sharing apps and platforms. Companies are interested in getting value out of their huge
repositories of digital data to deliver better and smarter services to their customers.

Image classification and recognition [10] is part of computer vision which is a very active
area of research and is driving many fields. In automotive industry, Image recognition is now
used for developing driverless cars. In gaming industry, image classification and recognition is
used to develop the next generation of games. Facebook’s famous face recognition algorithm
can recognise face with 98% accuracy. In short, image recognition and classification can
drive automation in many industries.

3.4.1 Deep Learning

Deep learning is one of the widely used method for Image classification [I7]. While neural
networks are covered in section [3.6], we are covering the part that is relevant to image
classification. Similar to a brain structure, neural networks are a group of neurons that are
connected to each other. Nodes within neural networks are referred to as neurons. Each
neuron takes an input, process it and then passes its output to next neuron. The output of
previous neuron is an input to the next layer of neurons till the final output is generated.
Neural network algorithms are trained using training datasets which is a set of labeled
images and then new images are feed to the same algorithm for classification. Computers
store images as metrics and hence can compare them easily. Another approach will be to
convert images to numeric data for comparison. There are two common methods to convert
an image to numerical dataset.

1. Greyscale: Image is converted to greyscale. Greyscale conversion means that the
picture will be converted to shades of color from white to black. Computer then
assigns a number to each pixel based on how dark the pixel is. Please refer to Figure
for the conversion of image data to equivalent numerical data.
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Figure 1: How computers translate images to greyscale

2. RGB: Colors can also be presented as RGB colors. Computers assigns a value to each
pixel depending on the RGB value of each pixel.

Deep learning is often compared to human mind. There is an understanding that the
field will continue to advance and enter many other domains. This has caused the fear that
this may result in unemployment and even to slavery. There is no doubt that deep learning
are efficient in performing tasks but they are not mean to solve all problems. There are many
limitations and challenges with deep learning that prevents it from competing with other
technologies. Gary Markus in [28] lists down the challenges with deep learning. He says ”In
a world with infinite data, and infinite computational resources, there might be little need
for any other technique”. We know well that we do not live in such world. We shall never
end up with a labeled sample for every problem space in deep learning. Thus, we will have
to generalise. Deep learning cannot learn from abstractions and only works best when there
are labeled samples available. Deep learning has a heavy reliance on availability of correct
and large number of labeled data. Gary also compares deep learning to a black box that
learn correlation or patterns by shifting different data points and combinations. It is quite
complex to decode the work of a neural network. This limits its usage in the fields where
humans might want to know how a system makes a specific decision.

3.5 Metric Learning

Distance metric learning is a process whereby a learned metric is formed before it is feed to
a classifier / predictor algorithm. A metric obeys four basic assumptions.

1. Non-negativity: d(z,z") > 0.
2. Identity: d(z,2") = 0.
3. Symmetry: d(z,2") = d(2', x).

4. Triangle Inequality: d(x,z") > 0.
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Large margin nearest neighbour LMNN [39] can be stated as a convex optimisation prob-
lem. This capability enables LMNN to find a global solution efficiently. The objective of the
algorithm is to learn a decision rule that can group data in to pre-defined classes. In LMNN,
same class neighbours are put together while imposters or data points with different classes
are pushed away from each other. Figure [2| shows the metric learning process with LMNN.

S = {(z,z;) : Y; = y; and x; belongs to the k-neighbourhood of x;},
Ro={(i, 25, 21) (2, 25) € S,yi # Yn}-

BEFORE AFTER
g [10cal neighborhood hI-‘I.aI'g:i.]-l"' .
LT h o e P
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Figure 2: LMNN - Target neighbours and Imposters

3.6 Neural Networks

Neural networks are group of algorithms that are designed based on the structure and func-
tionality of neurons in human brain. Neural networks are mostly used for pattern recognition.
Neural networks only accept numerical data only. Images, sound and text data needs to be
translated to numerical data before it can be used by a neural network algorithm. Please
refer to Figure [l for the conversion of image data to equivalent numerical data. The main
usage of Neural network is in the field of supervised and unsupervised learning but they can
also be used to extract features. Neural networks are made up of multiple layers of nodes. A
node in different layer will turn on or off depending on the input it receives. Figure [3| shows
the structure of a node within a Neural network. A node is made up of an inputs, weights,
input function, activation function and an output.

As mentioned earlier, a layer in neural network is a row of nodes. Layer are classified
in to three types; an input layer, a hidden layer and an output layer. Each layer has an
input and output. Each layer’s output is an input for the next layer until a final output is
produced. Figure [] shows layers of a neural network and how they are connected. Neural
networks have wide usage in different industries. Speech recognition [9], computer vision [7],
Pattern recognition [30] and financial crime detection [31] are some of the areas where neural
network helped solved many problems.

Figure [5| shows artificial neural network classified in to different types [§]. There is two
main classes of artificial neural networks (Feed Forward NN, Feed backward NN). In FFNN,

11
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Figure 4: Layers of a Neural network

information transmits in one direction. Information is feed from input node and then passed
to hidden node and finally passed on to output node [21]. In feedback NNs, backpropagation
between nodes produced a coordinated graph in sequence.

Artificial neural
networks
1
[ -1
Feed forward Feed backward
neural networks neural networks
I S S
[ [ 1 [ I I I |
Single layer Multi layer Raf:l!:‘a‘!t:;ansm reguz??;is(;anneural ij%};;gs; |sn g Hopfield Competitive Arts
perceptron perceptron e ek network (BRANN) map(SOM) networks networks models

Figure 5: Classification of Artificial Neural Networks

3.7 Reducing Dimensions

Dimension reduction refers to the techniques of reducing the dimensionallity of data while
minimising any changes to the data. With the advancement of technology, we are now able
to capture more data than ever. This has helped decision makers to make effective data
driven decisions. While, availability of data has helped, it has come with a curse. Unwanted
data or variables that do not add much value while analysts are analysing data for a specific
problem, can result in unnecessary complication. In other words, analysing many variables
is not easy task and hence it is a value add exercise to analyse only a subset of relevant
variables with respect to problem in hand. With the increase in data capture activities and
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the availability of different types of data such as images, videos, apps within smart phones,
social media data or sentiments, it is very important we reduce data before analysing it.
This will help in understanding data and factors influencing a specific objective. There
are many dimension reduction techniques available and this area is also an active research
field. Figure [ shows a three dimensional dataset getting converted to a two dimensional
dataset with minimal loss of information. The main objectives of each technique is to reduce
dimensions with minimal information loss. All techniques available for dimension reduction
are group in to two categories i.e. feature selections or feature reductions techniques [5].
Some of the common methods are listed below.

1.

Low Variance: Variance based methods, remove the dimensions that have low variance
with respect to other methods.

High correlation: Variables that have high correlations also does not add much value.
Instead one can use just one of such highly correlated variables. Correlation matrix of
all variables can identify all variables with high correlations.

Backward Feature Elimination: In this technique sum of square error is calculated after
eliminating each variable. The objective is to find the variable with smallest increase
in sum of square error.

. Forward Feature Selection: In this technique, we compare the performance of model

by adding one variable at a time. Variables with highest improvements in performance
is selected.

Factoring: Correlated variables are grouped together to create a single variable from
two or more correlated variables. Methods such as Exploratory or Confirmatory factor
analysis can be used.

Principal Component Analysis: Existing variables are transformed to new variables
which are linear combination of original variables. The components are created in such
a way that the first component accounts for most of the possible variations of original
data. The second component is orthogonal to the first component. This is to capture
the variation not captured by the first component.

The field of semi-supervised learning encapsulates many concepts and methods. To review
each of these concepts in details, one requires more time. The intention is to extend this
literature review in next two years as we solve our research problem.

13
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4 WORK IN PROGRESS

4.1 Constrained Graph kNN

k Nearest Neighbours kNN has been widely used for classification owing to its simplicity and
accuracy. In spite of the wide usage, kNN has performed poorly with a manifold distributed
data. Few extensions of kNN are available that deal with the manifold distributed data
but the extensions are either costly to compute or improvement in term of mean accuracy
of classification is not significant [37]. Classification of a manifold distributed data requires
prior knowledge of the shape of data distribution. The shape information is used to assess a
distance or similarity function. To help resolve some of these problems, we are introducing a
new semi-supervised algorithm which we are referring to as constrained graph kNN (cgkNN).
Our method can be used for traditional Gaussian distributed data classification as well as for
a non-linear manifold distributed data classification. Inspired by a method called manifold
ENN (mkNN) which is one of the best method for classification of a manifold distributed
data as well as classification using small number of labeled observations, our method works
in similar way but always outperforms mkNN with respect to compute time. Our method
also performs as good as, and at times better than mkNN with respect to mean accuracy of
classification and classification using small number of labeled observations.

Graph based classification methods are more accurate than traditional methods at clas-
sification of a manifold distributed data and have shown higher mean accuracy of classifi-
cation [37, 36]. ANN [I3] 40], k-means [36] and many other algorithms have been extended
using graphs to deal with a manifold distributed data. To understand why graph based
methods perform better with a manifold distributed data, we need to answer two important
questions.

1. What is a manifold distributed data?
2. What is random walk?

Definition: A data set is considered to be a manifold distributed if its intrinsic dimension
is less than its data space dimension [37]. A manifold is very different from dimensionality.
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Dimensionality refers to the number of variables or coordinates used to represent the data.
The shape in Figure [7] shows a two dimensional manifold represented in three dimensional
space. Any point on the manifold can be represented with two coordinates, but without
knowledge of the manifold, they must be represented using three coordinates. In short, we
define a manifold as a continuous geometrical structure that has fixed number of dimen-
sions. The number of intrinsic dimension of a manifold distributed data is less than its data
dimension.

’.b“\\“’“ ueescss
- H

- -5?‘;4}}//

9
7

Figure 7: A 2D manifold with 3D data points

As mentioned earlier, traditional classification algorithms struggle to classify a manifold
distributed data [41]. kNN, which is an effective and simple classification algorithm to classify
normal distributed data, also fails to classify a manifold distributed data with high mean ac-
curacy. The main reason for this limitation is the distance function used. Distance functions
cannot calculate the true distance between various points of a manifold distributed dataset
and thus results in high error rate. Distance metrics for the three dimensional data will cal-
culate distances within the three dimensional space, regardless of the manifold space; ideally
distances should be calculated along the manifold. Graph based methods can calculate the
distance between two points on a manifold distributed dataset quite accurately [42], 22] and
they can also use other available information such as class labels of the labeled data points.
To demonstrated the limitation of kNN and strength of graph based classification, we have
provided a synthetic dataset of a cone shape with class boundary of x = 0. The cone shaped
synthetic dataset can be generated as per below equations.

Z=vVX*+Y? (6)

The dataset contains three variable X, Y, Z. Z is a function of X, Y. Figure [8alshows the
graphical representation of the dataset. We have divided the dataset in to two classes (black
and red). An unlabeled point is shown in green in Figure . This unlabeled data point
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is part of the black class but sits very close to red class. Figure 8c| shows classification by
ENN of this unlabeled data point with £ = 14. A k = 14 is chosen for clarity only. All blue
coloured data points are the nearest neighbours calculated by Euclidean distance used by
ENN. It is obvious from the Figure [8c| that kNN choses the nearest data point with respect
to Euclidean distance and hence chose any point within the data space. kNN classification
in this scenario is inaccurate. Figure [8d|shows the same dataset classified with cgkNN. It is
obvious from the nearest neighbours (blue points), that cgkNN picks up the relevant data
space by considering the class information and by using graph for random walk as it identifies
the local neighbourhood. The walk on this graph is what we refer to as random walk.

Figure 8: How cgkNN works on a manifold distributed data

(b) 3D view of a cone data with two classes
(a) 3D view of a cone and a unlabeled data point

(d) 14 nearest point to unlabeled point -
(¢) 14 nearest point to unlabeled point -kNN cgkNN
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Table 2: k closest neighbours by weight

Closest k1 2 3 4 5

Obsrv No 12 10 2 19 11
weight 7.006982¢-4 7.002936e-4 6.998980e-4 6.990813e-4 6.988739¢-4

Class 0 1
Sum of weight 2.1e-3 1.4e-3

Constrained Graph kNN (cgkNN) is an extension of kNN whereby we use tired random
walk to identify nearest neighbours. The method can be applied to labeled as well as unla-
beled datasets. While our method outperforms many known methods for labeled datasets it
is among the best methods for classification of datasets with many unlabeled and few labeled
observations. The experimental results shown compares our method with the best available.
We use an approach called tired random walk also called constrained random walk to mea-
sure the distance [37]. We have used the class labels of the labeled data for distribution as
well as constrained information. The constrained information is used to modify the weight
of graph edges between labeled samples. While our algorithm is explained in detail later
with an example, a step by step procedure is outlined below.

4.1.1 The algorithm

1. Input X = X7 U Xy, y and k, where Xr is labeled data, Xy is unlabeled dataset, y is a
class label, k£ is number of nearest neighbours, ¢ is the Gaussian smoothing, « is the
strength reduction rate.

2. Create a graph adjacency matrix W of dataset X as per below.

(a) W;; =1if x;,2; € Xp and have same class label.
(b) Wi =0if z;,x; € X7 and have different class labels.

(c) Wi; = exp(—|la; — ]|*/20?) if at least one of z;, z; is unlabeled.
3. Calculate transition matrix P as per below. D is a diagonal matrix.

P=D"'W (7)

4. Compute the Prpy (tired random walk transition matrix) using equation

o

Prrw = Z(ap)t = - aP)_l (8)

t=0
5. Evaluate sample’s similarity using equation

(Prew)ij + (Prew);i
2

Wij = w(w;, ;) =
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6. Find k£ nearest neighbours of an unlabeled sample using equation

x; = argmax w(x, xj) (10)
T;EXT

7. Determine the class label using equation. C' is the class label and z is a sample

observation.
k

y = argmax Zw(w,xi)[(yi =) (11)

=1,2,...C 5

In tired random walk, transition probability of a walker reduces with a fixed proportion
a. In our algorithm we have fixed this ratio to 0.01 and thus the transition probability
becomes smaller after a fixed number of steps. Please see [37] for more details on why tired
random walk performs better than traditional random walk. « forces tired random walk to
identify local neighbourhood. Another common approach for a manifold distributed data
classification is the use of strengthening trees. Strengthening trees are used to reinforce
strong relationship and reduce the weaker ones. We have avoided using any strengthening
mechanism. We have conducted many experiments to evaluate the cost and benefit of using
such strengthening mechanism and have found that such mechanisms do not add much value
but have unnecessary overhead in term of additional computational cost. This is one of the
reason why our method works much faster than the one mentioned in [37]. Please refer to
Figure [14] for difference in compute cost between mkNN and cgkNN. The main cost of using
strengthen trees is the compute time. Algorithms that use strengthen trees as a strengthening
mechanism build these trees for each labeled observation in training dataset. Thus, their
processing cost increases as the number of labeled observations increases. This makes the
approach presented in [37] called mkANN only applicable to datasets with few labeled and
many unlabeled observations. This also makes this approach undesirable for a dataset that
has many labeled observations. In other words, the method will not take advantage of many
labeled observations and restrict itself to k observations per class. As strengthen trees are
required for each labeled observation, mkNN restrict itself to very small number of labeled
observation. The algorithm struggles to compute classification of an average size dataset if
decent number of observations were selected per class and not k labeled observations.

Most of the methods that can classify a manifold distributed data use random walks over
a graph to identify nearest neighbours. Random walk and creating trees to identify nearest
or furthest neighbours is a costly activity. It is not worth using these methods unless the
gain outweighs the additional cost. Algorithms that use trees ultimately reduces processing
cost by compromising other cost intensive processing activities. Like in [36] B7] the cost is
minimized by selecting only k labeled points per class for training. This is the same k in K
nearest neighbour classification. Obviously, the number is limited to k£ to keep the cost of
creating trees to minimal. Similar approaches are adopted by different algorithms whereby
creation of trees is kept to minimal to avoid costly processing.

In short, traditional kNN struggles with classification of a manifold distributed data.
Graph based approaches can classify a manifold distributed data but have very high compute
cost. Our method can be described as best of both i.e. high mean accuracy and less compute
cost for classification using graph.
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4.1.2 Example

The dataset used in this example is a subset of banknotes dataset. The dataset contains
twenty labeled observations, ten from each class and one unlabeled observation. We have
intentionally selected a subset that will result in incorrect classification by kNN and correct
classification by cgkNN. The objective is to show how traditional kNN can misclassify a
manifold distributed data based on Euclidean distance and how the same observation is
classified correctly using cgkNN. Banknotes dataset has two classes i.e. 1 or 0 and hence
our example also has two classes. Figure [ shows the dataset from two different angles. It
also shows the nearest neighbours as classified by Euclidian distance of kNN and also by
cgkNN. The yellow point is the unlabeled data point while the aqua colour points represent
the nearest neighbours. Blue colour represents class 0 while pink color represents class
1. The nearest neighbours are either class 0,1. You can see that observations 2,9 : 12
are calculated as the closest five observations to the unlabeled observation using Euclidian
distance. The same dataset returns different nearest neighbours with cgkNN. The nearest
neighbours as per cgkNN weightage are observations 2,10 : 12,19. As the data points are in
three dimensional space, we have shown two different views of the same for each method. The
correct calculation of one nearest neighbour results in correct classification of the unlabeled
point. ENN classify this unlabeled point as class 1 while cgkNN classify this unlabeled point
as class 0 which is correct classification.

Figure shows different views of how cgkNN classify this unlabeled points. It not
only calculates the nearest points accurately; it uses the class information to drive a better
outcome. The Final weight matrix based on tired random walk of the mentioned dataset is
shown in Table 2| Using this matrix cgkNN calculates the sum of weights and thus assigns
the unlabeled data point to the class with highest sum of weights.

As mentioned in the algorithm, the nearest points are calculated using similarity matrix
W = w(w;, x;) = (PTRW)ij;(PTRW)ji. Once a similarity weight matrix is calculated, nearest
k labeled points are identified along with their classes. This is followed by sum of weight
operations by class. The class with highest sum of weights wins and unlabeled point is
labeled with the same class.

Table [2] also shows sum of weights by class for this specific example. The sum of weight
for class 0 is higher than the sum of weight for class 1. Thus the algorithm classifies the
unlabeled observation to class 0.

4.1.3 Experimental results

We have performed experiments on six publically available datasets. These are the same
datasets used by [37]. The objective was to compare computational cost and mean accuracy
of prediction for cgkNN and mkNN. Mean accuracy is calculated using result from ten
different iterations with random samples in each iteration. During experiments we noticed
that the mean accuracy of predictions using traditional kNN declines as the number of k
increases. This is quite an obvious pattern in all of the mentioned datasets.

Please refer to Figure [12] to see the comparison of mean accuracy by mkNN and cgkNN
for various datasets. Banknotes dataset is compared twice but with different number of
labeled observations. It is very clear from Figure [12| that mean accuracy of cgkNN is always
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Figure 9: Location of unlabeled point and five nearest neighbours - kNN and cgkNN

(a) KNN (b) KNN
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Figure 10: Different views of how cgkNN cluster various classes and then classify

Figure 11: k closest observations to unlabeled observation
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Figure 12: Mean error rate comparision of cgkNN and mkNN

in line with mAeNN irrespective of number of labeled observations available. Table [3| shows
mean accuracy for various datasets with different size of training. It should be noted that
while cgkNN performs as good as or better than mkNN with respect to mean accuracy of
prediction, it is is much faster than mkEkNN. Table |3| shows the processing time for various
datasets. It is obvious from the results that cgkNN can produce same results as mkNN
but with almost half the time required for computation. It should be noted that these
calculations are based on same datasets and all environmental variables such as network,
processing power were keep the same to get a comparable result. You would notice that
the mean accuracy of classification of all these datasets increases if we consider a good size
training dataset. This may not be achievable in scenarios where we have limited labeled
observations.

Figure shows the mean error rate of various datasets for k of 1 to 10 using mkNN
and cgkNN. Figure 13| also compares the result for different number of training observations
from the same dataset. It is obvious from Figure [13| that the performance of both methods
are in line with each other irrespective of number of training observations selected. On the
other hand, Table [3| shows a comparison of our method to mkNN with respect to mean
accuracy and processing time. The results are based on selection of various number of
training observations per class. You can see from results that while mean accuracy remains
the same for both the methods, our method is much efficient on processing time. Processing
time of mkNN gets worse as the number training observations increases. The main reason for
this is the usage of strengthen trees in mkNN which are required for all the labeled training
observations. Thus the processing time increases as we increase number of observations.
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Figure 13: Mean error rate of five real-world data sets with different number of training sets.
Mean error rate on the ordinate and k on the abscissa.
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¢ Error Processing time Difference

Dataset #TR  cgkNN mkNN cgkNN mkNN ¢ Error Time
Banknotes 20 24.4 23.8 1,538 1,873 0.6 -335
Banknotes 200 6.4 6.1 2,532 2,944 0.3 -412
Banknotes 250 5.6 5.6 4,493 5,307 0 -814
Banknotes 300 5.1 5.2 4,044 4,782 -0.1 -738
Banknotes 400 4.3 4.2 3,930 5,220 0.1 -1,290
Multifeature 100 38.5 38.5 7,055 9,829 0 -2,774
Multifeature 200 29.1 29.3 15,975 18,466 -0.2 -2,491
Multifeature 300 24.8 24.6 16,773 19,782 0.2 -3,009
Pendigits 500 5.6 6.1 17,084 24,234 -0.5 -7,150
Pendigits 600 5.2 5.3 44,068 49,194 -0.1 -5,126
Pendigits 900 4.4 3.8 53,000 67,857 0.6 -14,857
Segmentation 70 27.9 27.9 13,908 15,570 0 -1,662
Segmentation 420 16.4 16 21,742 26,178 0.4 -4,436
Segmentation 875 12.4 12.3 28,541 32,940 0.1 -4,399
Statlog 180 22.6 17.9 4,109 6,445 4.7 -2,336
Statlog 240 174 16.8 5,456 7,053 0.6 -1,597
Statlog 360 16.6 14.9 6,252 9,166 1.7 -2,914

Table 3: Mean accuracy of prediction and processing time mkNN vs cgkNN

Figure [14] shows a comparison of compute time for various samples of the five datasets for
mkNN and cgkNN. It is visible that cgkNN performs much better with respect to compute
time when compared to mkNN.

5 RESEARCH AIM AND OBJECTIVES

5.1 Overall Research Aim

This research will examine different methods of semi-supervised learning with specific em-
phasis on a manifold distributed data. The research will also examine best approaches
to semi-supervised learning with limited number of labeled observations. New methods to
semi-supervised learning and optimisation / extension of existing methods are also in scope.

5.2 Research Objectives

The objectives of this research are as follows:
1. Part 1: Below areas will be covered.

(a) Examine and explore graph based methods for classification and clustering. Ex-
plore and explains why random walk works in these methods.
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(b) Examine and explore the application of multi-dimensional scaling in hierarchical
and a manifold clustering.

(c) Examine and explore semi-supervised learning for image classification, especially
work done by Facebook.

2. Part 2: Below areas will be covered.

(a) Examine and explore distance metric learning and classification. This will be
a thorough review of work done by Kilian Weinberger including Large Margin
nearest neighbour LMNN.

(b) Examine and explore self-supervised learning in context of the work done by
google research.
3. Part 3: Contributions
(a) Development of a graph based classification algorithm for a manifold distributed
data and unlabeled data. Submission of the same to a relevant journal.

(b) An article on why random walk or tired random walk works. Submission of the
same to a relevant conference.

(c) Development of new algorithm using graph based methods for clustering. Sub-
mission to a relevant journal.

(d) Extension of existing graph based algorithms and potential paper submissions to
a relevant conference.

(e) Development / extension / optimisation of an image classifier. Submission of the
same to a journal.

5.3 Research Questions

The following research questions will be applied to this area of study:
1. What is the most effective way of classifying a manifold distributed data?

2. What is the most effective way of labeling data with small number of labeled and large
number of unlabeled observations?

Most of the next two years of research will revolve around answering these two questions.

6 PROPOSED RESEARCH SCHEDULE

A Gantt timeline chart was designed to establish rough timeline of all activities for next
three years. This is to ensure all activities are completed within the agreed time frame.
Please refer to Appendix [C] for Gantt Chart and Schedule. To date, timeframes allocated
for various tasks have been met, and we are progressing without any difficulty.
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Paper Title/Content Respective Journal

1 Constrained Graph Nearest Neighbour Classification Elsevier
2 Probabilistic Nearest Neighbours Classification for Unlabeled Data AI2019
3 Clustering using constrained Graph Nearest Neighbours Elsevier
4 Semi-supervised learning for breast cancer image classification TBA
) Semi-supervised learning with metric learning TBA

Table 4: Outline of Proposed Papers for Publication

7 CONTRIBUTION OF PROPOSED RESEARCH

7.1 Benefits of Research

This research will examine how different types of semi-supervised learning behave with small
number of labeled observations. The focus will be to optimise algorithms to work with
small number of labeled observations and produce high mean accuracy of classification. The
research will also be focusing on classification of a manifold distributed data and data with
high number of dimensions while, concurrently, investigating the semi-supervised algorithms
for breast cancer image classification. This is in order to address the gaps in classification
accuracy of medical images. This research will also examine work done by Facebook and
google in the field of semi-supervised learning and image classification with a view to improve
and build on existing work.

7.2 Communication of Results

Results will be communicated mainly via publications in journals. Plans for five papers for
submission to relevant journals are outlined below in Table [

8 CONCLUSION

Achieving higher mean accuracy of classification can add tremendous value to tasks that use
various classification algorithms. The cost of labeling unlabeled observations is increasing
with the increase in cost of human resources. Therefore, it is important that effective semi-
supervised learning algorithms are developed that can label unlabeled observations and can
achieve high mean accuracy with minimal cost of human resource.

This report has highlighted the potential for further research in this area. To develop new
or optimise the existing algorithms for classification that can achieve high mean accuracy of
classification irrespective of the type of data used, is the basic objective of this project.
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Abstract

k Nearest Neighbours kNN has been widely used for classification owing to its simplicity and accuracy.
In spite of the wide usage, kNN has performed poorly with manifold distributed data. Few extensions of
kNN are available that deal with manifold distributed data but the extensions are either costly to compute
or improvement in term of mean accuracy of classification is not significant. Classification of manifold
distributed data requires prior knowledge of the shape of data distribution. The shape information is used
to assess a distance or similarity function.

In this paper, we are introducing a new semi-supervised algorithm which we are referring to as constrained
graph kNN (cgkNN). Our method can be used for traditional Gaussian distributed data classification as well
as for non-linear manifold distributed data classification. Inspired by a method called manifold kNN (mkNN)
which is one of the best method for classification of manifold distributed data as well as classification using
small number of labeled observations, our method works in similar way but always outperforms mkNN with
respect to compute time. Our method also performs as good as, and at times better than mkNN with respect
to mean accuracy of classification and classification using small number of labeled observations.

Keywords: Graph based Semi-Supervised Learning, k Nearest Neighbours, Manifold Distributed Data,
Tired Random Walk.

1. Introduction

Classification models are important tools for data analysis allowing class labels to be predicted for a given
observation. Classification models require training data, which is a set of example observations with manually
assigned labels for each observation. Often we find that unlabeled observation data can be easily obtained
but experts are not always available to manually label data for model training. Semi-supervised learning
uses the class label information from manually labeled training data along with distribution of unlabeled
data in an attempt to provide more suitable classification models for a given data space. Recent research has
shown that high mean accuracy of classification can be obtained using graph based semi-supervised k Nearest
Neighbours, when only a small proportion of the data is manually classified. These graph based algorithms
take advantage of the data manifold structure when computing class labels. More often the complexity
of these graph based algorithms lead to long compute times when performing classification. Traditional
classification algorithms not only fail to classify manifold distributed data with high mean accuracy but also
struggle to classify using small number of labeled observations.
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In this paper, we introduce a new graph based semi-supervised classification algorithm that provides high
classification accuracy and due to its reduced complexity, requires shorter compute times. The algorithm
can also classify with high mean accuracy using small number of labeled observations.

The contributions of this work are:

1. An algorithm for classification of manifold distributed data. The algorithm has the ability to classify
with high mean accuracy using small number of labeled observations.

2. Experimental results, showing our algoritms performance with respect to mean accuracy of classification
and compute time with other similar algorithms.

The article will proceed as follows: Section 2 describes related work. Section 3 presents constrained graph
algorithm. Section 4 presents experimental results and comparison of cgkNN and mAkNN. This is followed
by conclusions in Section 5.

2. Related work

The idea of using unlabeled observations along with labeled observations to improve prediction is not
new. There was always a need to use the available unlabeled observations to enrich training or in other words
improve mean accuracy of classification. This desire has led researchers to use the unlabeled observations
in many different ways. Self-supervised learning also called self-learning is a very simple approach to use
unlabeled observations. While self-learning is an easier approach for using unlabeled available observations,
it does not guarantee improvement in mean accuracy of classification. Self-supervised learning is one of the
most widely used semi-supervised method [1, 2, 3] which can be applied to any classification algorithm. For
example, self-training kNN involves predicting class of unlabeled observations using kNN [4] and labeled
observations as input. KNN is trained using a training set TR and unlabeled set UD is then labeled using
the predicted class [5, 6]. The unlabeled points that have high confidence of prediction are then added to
training set TR along with their predicted class. The extended training set ETR = TR+UD is then used to
classify other unlabelled points. See Table 2 for the impact of adding unlabeled points on mean accuracy of
prediction using kNN. Mean accuracy of prediction is calculated before and after the addition of unlabeled
points. Mean accuracy is calculated by taking the mean of accuracy of random observations of 30 different
iterations. It is very obvious from the results that self-learning may or may not improve mean accuracy.
The fact that self-learning does not guarantee an improvement in mean accuracy is another reason we have
introduced our method cgkNN for classification. cgkNN works with small number of labeled observations
and produces high mean accuracy with much less compute cost. Our method can be classified as a graph
based semi-supervised learning method. There are many different approaches available for semi-supervised
learning [5, 7]. Semi-supervised learning is a class of machine learning that falls between supervised learning
and unsupervised learning. In Semi-supervised learning, labeled as well as unlabeled data is used to train
an algorithm. Supervised learning is based on training set that is fully labeled while unsupervised learning
uses unlabeled data for training. Semi-supervised learning is a complex area of classification where most
of the commonly used classification algorithms fail due to lack of / limited number of labeled observations.
Supervised learning algorithms can be used as semi-supervised learning algorithms via a process called
self learning [1, 2, 3]. In this process, classifier is trained using limited number of available observations.
Observations with predicted classes that have high confidence are refeed to the algorithm to improve its
performance. Semi-supervised methods are either generative [8, 9] or graph based methods [10]. Generative
methods estimate the distribution of data points belonging to different classes. Generative methods, model
how the data is generated [11] and learns a function f(x,y) that can be used to score the configuration
determined by x and y together. This way one can find the y for a new z by finding a y for which the
score of f(x,y) is maximum. Naive Bayes and Hidden Markov Models are some of the example of generative
models. Graph based algorithms build graphs whose nodes are labeled and unlabeled data points. Labeled
data points are used to spread information to unlabeled data points. In these methods, graphs g = (V, E)
where V represent a node and F an edges is used to represent the geomatry of the data. E represents
similarity between two edges. Similarities are shown using a weight matrix W. Graph based methods
are very useful when only small amount of labeled observations is available and the cost of labeling large
unlabeled observations is high. While many methods exist for classification; accuracy is not always driven
by the method itself, underlying data also plays a major role in classification accuracy. Most of the methods



available today are developed with the assumption that data lies in low manifold. This assumption results in
low performance by these methods when data used is not in low manifold. Graph based classification methods
are more accurate at classification of manifold distributed data and have shown higher mean accuracy of
classification [12, 1]. kNN [4, 13], k-means [1] and many other algorithms have been extended using graphs to
deal with manifold distributed data. To understand why graph based methods perform better with manifold
distributed data, we need to answer two important questions.

1. What is manifold distributed data?
2. What is random walk?

Definition: A data set is considered to be manifold distributed if its intrinsic dimension is less than its
data space dimension [12]. A manifold is very different from dimensionality. Dimensionality simply refers to
n in m x n dataset where m is the number of rows and n is the number of columns. The shape in Figure 1
shows a two dimensional manifold with three dimensional data points. In short, we define manifold as a
continuous geometrical structure that has fixed number of dimensions. The number of intrinsic dimension
of manifold distributed data is less than its data dimension.
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Figure 1: A 2D manifold with 3D data points

As mentioned earlier, traditional classification algorithms struggle to classify manifold distributed data.
kNN, which is an effective and simple classification algorithm to classify normal distributed data, also fails to
classify manifold distributed data with high mean accuracy. The main reason for this limitation is distance
function used by KNN. Distance functions cannot calculate the true distance between various points of a
manifold distributed dataset and thus results in high error rate. On the contrary, graph based methods can
calculate the distance between two points on manifold distributed dataset quite accurately and they can
also use other available information such as class labels of the labeled data points. To demonstrated the
limitation of kNN and strength of graph based classification, we have chosen a synthetic dataset of a cone
shape. The cone shaped synthetic dataset can be generated as per below equations.

X =Y =seq(—1,1,len = 10) (1)

Z=VX?4+Y? (2)

The dataset contains three variable XY, Z. Z is a function of X,Y. Figure 2a shows the graphical
representation of the dataset. We have divided the dataset in to two classes i.e. black and red classes for
demonstration purpose. An imaginary unlabeled point is also selected which can be seen in green colour in



Figure 2b. This unlabeled data point is part of the black class but sits very close to red class. Figure 2c
shows classification by NN of this unlabeled data point with & = 14. All blue coloured data points are
the nearest neighbours calculated by Euclidean distance used by kKNN. It is obvious from the Figure 2c¢ that
kNN choses the nearest data point with respect to Euclidean distance and hence chose any point within the
data space. kNN classification in this scenario is inaccurate. Figure 2d shows the same dataset classified
with cgkNN. It is obvious from the nearest neighbours (blue points), that cgkINN picks up the relevant data
space by considering the class information and by using graph for random walk as it identifies the local
neighbourhood. The walk on this graph is what we refer to as random walk. The approach is explained in
detail in 3.2.

Figure 2: How cgkNN works on manifold distributed data

(b) 3D view of a cone data with two classes and a
(a) 3D view of a cone unlabeled data point

(d) 14 nearest point to unlabeled point -cgkNN




Table 1: k closest neighbours by weight

Closest k 1 2 3 4 5

Obsrv No 12 10 2 19 11
weight 7.006982e-4  7.002936e-4  6.998980e-4  6.990813e-4  6.988739¢-4

Class 0 1
Sum of weight 2.1e-3 1.4e-3

3. Constrained Graph kNN

kNN is one the simplest and most used method for classification. If we consider X as the matrix of
features and Y as the class label, kNN looks at k£ which will always be a positive integer, and estimates the
probability of it belonging to class j for a test observation x.

Pr(Y =X =20) = 3 Iy = j) (3)
iEN()

As described earlier kNN is widely used for classification problems. The ease of use and good performance
in term of mean accuracy of classification has made kNN an algorithm of choice for researchers and general
public working on classification problems. kNN can easily and accurately classify any type of data that lies
in low manifold but with high manifold distributed data the accuracy of classification drops drastically. This
problem with NN lead us to come up with a new approach for classification that works not only on normal
distributed data but also on manifold distributed data.

Constrained Graph kNN (cgkNN) is an extension of kNN whereby we use tired random walk to identify
nearest neighbours. The method can be applied to labeled as well as unlabeled datasets. While our method
outperforms many known methods for labeled datasets it is among the best methods for classification of
datasets with many unlabeled and few labeled observations. We use an approach called tired random walk
also called constraint random walk to measure the distance [12]. Basically, we use the class labels of the
labeled data for distribution as well as constraint information. The constraint information is used to modify
the weight of graph edges between labeled samples. While our algorithm is explained in detail later with an
example, a step by step procedure is outlined below.

3.1. The algorithm
1. Input X = X¢ U Xy, y and k, where Xp is labeled data, Xy is unlabeled dataset, y is class label, k is
number of nearest neighbours.
2. Create an graph adjacency matrix W of dataset X as per below.
(a) Wy; =11if ;,2; € Xp and have same class label.
(b) Wi; =0if 2;,x; € X7 and have different class labels.
(c) Wi; = exp(—||z; — x;||*/20?) if at least one of z;,z; is unlabeled.
3. Calculate transition matrix P as per below.

P=D"'W (4)

4. Compute the Prry (accumulated transition probability matrix) using equation

o0

Prrw =Y (aP)! = (I —aP)™" (5)
t=0

5. Evaluate sample’s similarity using equation

(Prrw)ij + (Prew);i

Wij = w(wi, x;) = 5




6. Find nearest neighbours of an unlabeled sample using equation

x; = argmax w(x, xj) (7)
T, EXT

7. Determine the class label using equation

k
Yy = arg max Zw(m,xi)l(yi =c) (8)

e=1,2,.....C =

As seen above, cgkNN uses random walk over a graph, it is important to understand how cgkNN uses
tired random walk to calculate neighbourhood.

3.2. Tired Random Walk

Tired random walk is a form of simple random walk. To understand tired random walk, it is important
we understand simple random walk first. In simple words, random walk is a sequence of fixed length steps
in random direction. The random movement can be one, two or n dimensional. In a d-dimensional vector,
a simple random walk of n steps is denoted by S,, and is defined by

Sh =x+ZXj 9)
i=1

where x represents the position on vector at time n = 0 and X represents the movement from time j to j+1.
Later in this text, you will note that our approach uses tired random walk instead of classical random walk.
The main difference between a tired random walk and classical random walk lies in transition probability of
walker.

r1 =Txg (10)
xo =Tx (11)
x9 =T (Txp) (12)
xy = T%xg (13)
Tp =T"xg (14)

In tired random walk, transition probability of a walker reduces with a fixed ratio. In our algorithm we
have fixed this ratio to 0.01 and thus the transition probability becomes zero after a fixed number of steps.
Please see [12] for more details on why tired random walk is better than traditional random walk. Another
common approach in manifold distributed data classification is the use of strengthen trees. Strengthen trees
are used as a strengthening mechanism to validate and enforce strong relationship and reduce the weaker
ones. We have avoided using any strengthening mechanism. We have conducted many experiments to
evaluate the cost and benefit of using such strengthening mechanism and have found that such mechanisms
do not add much value but have unnecessary overhead in term of additional compute cost. This is one of
the reason why our method works much faster than the one mentioned in [12]. Please refer to Figure 8
for difference in compute cost between mkNN and cgkNN. The main cost of using strengthen trees is the
compute time. Algorithms that use strengthen trees as a strengthening mechanism build these trees for
each labeled observation in training dataset. Thus their processing cost increases as the number of labeled
observations increases. This makes the approach presented in [12] called mkNN only applicable to datasets
with few labeled and many unlabeled observations. This also makes this approach undesirable for a dataset
that has many labeled observations. In other words, the method will not take advantage of many labeled
observations and restrict itself to k& observations per class. As strengthen trees are required for each labeled
observation, mkNN restrict itself to very small number of labeled observation. The algorithm struggles to



Table 2: Impact of unlabeled data points on mean accuracy of classification - Iris dataset

#r1r ¢rTROCC H#HUD HETR OETRACC

40 0.963 20 60 0.944
20 0.944 20 40 0.973
25 0.95 25 50 0.95

15 0.958 15 30 0.925
30 0.944 30 60 0.944
40 0.95 30 70 0.975

compute classification of an average size dataset if decent number of observations were selected per class and
not k labeled observations.

Most of the methods that can classify manifold distributed data use random walks over a graph to identify
nearest neighbours. Random walk and creating trees to identify nearest or furthest neighbours is a costly
activity. It is not worth using these methods unless the gain outweighs the additional cost. Algorithms that
use trees ultimately reduces processing cost by compromising other cost intensive processing activities. Like
in [1, 12] the cost is minimized by selecting only k labeled points per class for training. This is the same
k in K nearest neighbour classification. Obviously, the number is limited to k to keep the cost of creating
trees to minimal. Similar approaches are adopted by different algorithms whereby creation of trees is kept
to minimal to avoid costly processing.

In short, traditional NN struggles with classification of manifold distributed data. Graph based ap-
proaches can classify manifold distributed data but have very high compute cost. Our method can be
described as best of both i.e. high mean accuracy and less compute cost for classification using graph.

3.3. Example

The dataset used in this example is a subset of banknotes dataset. The dataset contains twenty labeled
observations, ten from each class and one unlabeled observation. We have intentionally selected a subset that
will result in incorrect classification by kNN and correct classification by cgkNN. The objective is to show how
traditional kNN can misclassify manifold distributed data based on Euclidean distance and how the same
observation is classified correctly using cgkNN. Banknotes dataset has two classes i.e. 1 or 0 and hence our
example also has two classes. Figure 3 shows the dataset from two different angles. It also shows the nearest
neighbours as classified by Euclidian distance of kNN and also by cgkNN. The yellow point is the unlabeled
data point while the aqua colour points represent the nearest neighbours. Blue colour represents class 0 while
pink color represents class 1. The nearest neighbours are either class 0,1. You can see that observations
2,9 : 12 are calculated as the closest five observation to the unlabeled observation using Euclidian distance.
The same dataset returns different nearest neighbours with cgkINN. The nearest neighbours as per cgkNN
weightage are observations 2,10 : 12,19. As the data points are in three dimensional space, we have shown
two different views of the same for each method. The correct calculation of one nearest neighbour results
in correct classification of the unlabeled point. kNN classify this unlabeled point as class 1 while cgkNN
classify this unlabeled point as class 0 which is correct classification.

Figure 4 shows different views of how cgkNN classify this unlabeled points. It not only calculates the
nearest points accurately, it uses the class information to drive a better outcome. The Final weight matrix
based on tired random walk of the mentioned dataset is shown in Table 1. Using this matrix cgkNN calculates
the sum of weights and thus assigns the unlabeled data point to the class with highest sum of weights.

As mentioned in the algorithm, the nearest points are calculated using similarity matrix w;; = w(z;, z;) =
(Prrw)ij+(Prrw);i
2

. Once a similarity weight matrix is calculated, nearest k labeled points are identified along
with their classes. This is followed by sum of weight operations by class. The class with highest sum of
weights wins and unlabeled point is labeled with the same class.

Table 1 also shows sum of weights by class for this specific example. The sum of weight for class 0 is
higher than the sum of weight for class 1. Thus the algorithm classifies the unlabeled observation to class 0.



Figure 3: Location of unlabeled point and five nearest neighbours - kNN and cgkNN

(a) KNN (b) kNN




Figure 4: Different views of how cgkNN cluster various classes and then classify

Figure 5: k closest observations to unlabeled observation

(b)

LIK
i
IS

iy,

I

emveR v
NN

S
<S

10



Banknotes dataset 10n Banknotes dataset 100n Segmentation dataset

040
]
008
|
030
|

B coxnn B coxnn B coxnn

8 o e B e B e

Ermor rate
025 030
| |
Error rate
006
]
Ermor rate
028
]

020
]

005
!
0
!

K K K

Statlog dataset Multifeature dataset Pendigits dataset

020
]
A
|
009
|

g o R B connn

03%

B e e B e

019
]
0.08
|

03%
]

Ermorrate
Ermorrate
0385
!
Eorrate
007
!

0330
!
006
!

017
]

0375
!

016
1
0370
|
005
|

Figure 6: Mean error rate comparision of cgkNN and mkNN

4. Experimental results

We have performed experiments on six publically available datasets. These are the same datasets used
by [12]. The objective was to compare computational cost and mean accuracy of prediction for cgkNN
and mkNN. Mean accuracy is calculated using result from ten different iterations with random samples in
each iteration. During experiments we noticed that the mean accuracy of predictions using traditional kNN
declines as the number of k increases. This is quite an obvious pattern in all of the mentioned datasets.

Please refer to Figure 6 to see the comparison of mean accuracy by mkNN and cgkNN for various
datasets. Banknotes dataset is compared twice but with different number of labeled observations. It is
very clear from Figure 6 that mean accuracy of cgkNN is always inline with mkNN irrespective of number
of labeled observations available. Table 3 shows mean accuracy for various datasets with different size of
training. It should be noted that while cgkNN performs as good as or better than mkNN with respect to
mean accuracy of prediction, it is is much faster than mkkNN. Table 3 shows the processing time for various
datasets. It is obvious from the results that cgkNN can produce same results as mkNN but with almost half
the time required for computation. It should be noted that these calculations are based on same datasets and
all environmental variables such as network, processing power were keep the same to get a comparable result.
You would notice that the mean accuracy of classification of all these datasets increases if we consider a good
size training dataset. This may not be achievable in scenarios where we have limited labeled observations.

Figure 7 shows the mean error rate of various datasets for k of 1 to 10 using mkNN and cgkNN. Figure 7
also compares the result for different number of training observations from the same dataset. It is obvious
from Figure 7 that the performance of both methods are in line with each other irrespective of number of
training observations selected. On the other hand, Table 3 shows a comparison of our method to mkNN
with respect to mean accuracy and processing time. The results are based on selection of various number
of training observations per class. You can see from results that while mean accuracy remains the same for
both the methods, our method is much efficient on processing time. Processing time of mkNN gets worse
as the number training observations increases. The main reason for this is the usage of strengthen trees in
mkNN which are required for all the labeled training observations. Thus the processing time increases as we
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Figure 7: Mean error rate of five real-world data sets with different number of training sets. Mean error rate on the ordinate

and k on the abscissa.
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¢ Error Processing time Difference

Dataset #TR  cgkNN  mkNN  cgkNN mkNN ¢ Error Time
Banknotes 20 24.4 23.8 1,538 1,873 0.6 -335
Banknotes 200 6.4 6.1 2,532 2,944 0.3 -412
Banknotes 250 5.6 5.6 4,493 5,307 0 -814
Banknotes 300 5.1 5.2 4,044 4,782 -0.1 -738
Banknotes 400 4.3 4.2 3,930 5,220 0.1 -1,290
Multifeature 100 38.5 38.5 7,055 9,829 0 -2,774
Multifeature 200 29.1 29.3 15,975 18,466 -0.2 -2,491
Multifeature 300 24.8 24.6 16,773 19,782 0.2 -3,009
Pendigits 500 5.6 6.1 17,084 24,234 -0.5 -7,150
Pendigits 600 5.2 5.3 44,068 49,194 -0.1 -5,126
Pendigits 900 4.4 3.8 53,000 67,857 0.6  -14,857
Segmentation 70 27.9 27.9 13,908 15,570 0 -1,662
Segmentation 420 16.4 16 21,742 26,178 0.4 -4,436
Segmentation 875 12.4 12.3 28,541 32,940 0.1 -4,399
Statlog 180 22.6 17.9 4,109 6,445 4.7 -2,336
Statlog 240 17.4 16.8 5,456 7,053 0.6 -1,597
Statlog 360 16.6 14.9 6,252 9,166 1.7 -2,914

Table 3: Mean accuracy of prediction and processing time mkNN vs cgkNN

increase number of observations. Figure 8 shows a comparison of compute time for various samples of the
five datasets for mkNN and cgkNN. It is visible that cgkNN performs much better with respect to compute
time when compared to mkNN.

5. Conclusions

In this paper we proposed a new extension to k nearest neighbour algorithm to classify non-linear manifold
distributed data as well as traditional Gaussian distributed data. We have called this method cgkNN. cgkNN
can classify manifold distributed data with high mean accuracy and unlabeled observations given a small
number of labeled samples. We have compared our results with one of the best available approach mkNN
and have found our method to perform much faster than mkNN and many other approaches available. Our
method also performs as good as and at instances better than mANN with respect to mean accuracy of
classification. Our experiments also show that high mean accuracy can be achieved with small number of
labeled observations. Method presented in this paper shows that unlabeled observations can add value in
term of improvement in accuracy of classification with small compute cost. Our approach, outperforms the
best available methods for unlabeled data classification is still very light on compute time.
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Probabilistic Nearest Neighbours for Unlabelled
Data Classification
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Abstract—Unlabelled data points contains valuable informa-
tion that can be used to train classification models. Most of
the classification models are dependent on availability of class
information for training. Thus unlabelled data points are often
ignored while training a classification model. Unlabelled data
points can increase the accuracy of prediction in scenarios where
models are trained using limited number of observations. In this
paper, we have investigated the possible approaches to using
unlabelled data points to enrich training datasets. We have
also introduced a probabilistic nearest neighbour approach to
prediction and using the unlabelled data points. Finally, we
have compared our approach to self-trained kNN for unlabelled
datasets.

Index Terms—kNN, Classification, unlabelled data points,
Probabilistic nearest neighbour

I. INTRODUCTION

Classification and prediction models are trained using his-
torical data with class labels. A trained model’s accuracy of
prediction is largely dependent on the training dataset. At
times, we have available observations that can enrich the
training dataset but due to unavailability of class labels they
are ignored. This could be due to the fact that appending
class label is an expensive and at times, a time consuming
exercise. This paper discusses the possibility of using avail-
able unlabelled observations to enrich a training set. We are
interested to know if unlabelled i.e. data points that have no
class information can add value in training a model. We are
especially interested in reviewing performance of a model
before and after the unlabelled points are added. A new
probability nearest neighbour pNN approach is introduced that
can use unlabelled data points. pNN labels the unlabelled
data points. These labelled points are then added to existing
labelled data points to enrich training dataset. The mentioned
approach uses distance measure along with probability to
predict class labels. Finally, we have compared our method to
self-trained kNN. kNN is one of the famous available methods
for classification. We have found that our method is able
to improve classification and average accuracy of prediction
when compared to self-training kNN.

2" Dr Laurence Park
School of Computing, Engineering and Mathematics
Western Sydney University
Sydney, Australia
L.Park@westernsydney.edu.au

There are three scenarios that we want to discuss and
validate here;

1) Can we use unlabelled observations in training models
without a degradation in average accuracy of prediction?

2) What is the best technique of using available unlabelled
points to train a model?

3) Can we identify unlabelled points that result in improve-
ment of average prediction accuracy?

II. ENRICHMENT OF TRAINING SET WITH UNLABELLED
DATA POINTS

Training datasets can be enriched by adding more observa-
tions but adding unlabelled observations to a training dataset
may or may not enrich the training datasets. Class labels which
are important attributes in enriching a training datasets are
not available in unlabelled observations. We have used two
datasets i.e. Iris and observations disease datasets to validate
our approach of enriching training dataset. We have run at
least 30 iterations of random training and test data sets from
each of the mentioned data sources. In each iteration we have
divide the data into three datasets;

1) TR dataset: This is the training dataset with a labelled
class.

2) UD dataset: This is a dataset for unlabelled data points.

3) TS dataset: This is test dataset which is used to test
accuracy of prediction in all scenarios.

We are using a random set of n labelled observation as our
training dataset TR. Similarly, we have m random observation
as new unlabelled data points UD. We have used these datasets
to train kNN and our model. Same test dataset TS is used to
calculate average accuracy of prediction using both methods.
kNN [1] with self-training is compared to our Probabilistic
nearest neighbour approach for prediction accuracy.

ETR=TRUUD ey

Predict(TR,TS) ~ Predict(ETR,TS) )



TABLE I
IMPACT OF UNLABELLED DATA POINTS ON ACCURACY

TR  Accuracy UD ETR  Accuracy
40  0.963 20 60 0.944

20 0.944 20 40 0.973

25 0.95 25 50 0.95

15 0.958 15 30 0.925

30 0.944 30 60 0.944

40  0.95 30 70 0.975

III. RELATED WORK

There are many different approaches available for semi-
supervised learning [2]. Self-training is one of the basic and
most widely used semi-supervised method [3] [4] [5]. These
methods are based on some common assumption like smooth-
ness assumption (SA), cluster assumption (CA) and manifold
assumption (MA) [1]. A smoothness assumption states that
data in high density regions should share the same label while
cluster assumption assumes that the points in same cluster
will have same label. Manifold assumption is assuming that
the data lies in low manifold. Many generative [6] and graph
based semi-supervised learning methods [7] are also available.
Self-training is about using labelled data to train a model. The
trained model is then used to predict the class of unlabelled
observations and thus the predictions with high confidence is
then added to training dataset along with predicted class label.
A new model is then trained on extended training dataset. In
this paper we are comparing the self-training kNN with our
probabilistic nearest neighbour pNN model.

IV. SELE-TRAINING KNN

kNN is one the simplest method for classification. If we
consider X as the matrix of features for an observation and
Y is the class label, kNN looks at k (a positive integer) and
estimates the probability of it belonging to class j for a test
observation Xg.

PT(Y=.7'|X=330>:% > Iy =) (3)
i€eNo
The self-training kNN involves predicting class of unla-
belled observations using kNN [8]. kNN is trained using
training set TR and unlabelled points are then labelled using
the predicted class [1] [9]. The unlabelled points along with
their respected predicted class are then added to training
set TR. We call this new dataset as Extended Training set
ETR. See Table I for the impact adding of unlabelled point
on accuracy of prediction. Average accuracy of prediction is
calculated before and after the addition of unlabelled points.
While, the number of observation remains the same in TR and
UD dataset, different random observations are picked in each
iteration. See Figure 1. In this figure each accuracy number
is for the same size of TR and UD but different random
observations.
A distribution of 30 such iteration is used to calculate
the significance of results. Paired t-test and p-value for these
distributions are given in Table I. These values show that there

Accuracy

Fig. 1. Accuracy before and after self-training kNN - Iris Dataset

is no significant difference in accuracy of prediction before and
after labelled points were added. What this signifies is the fact
that while the approach is good for using unlabelled points,
there is no improvement in the average accuracy of prediction.

p — value = 0.7837 )

t =—-0.27707 )

V. PROBABILISTIC NEAREST NEIGHBORS PNN

This is a new approach that we are introducing in this
paper. The approach is similar to kNN but a class label is
predicted using a probabilistic approach i.e. probability of an
observation belonging to a specific class. The probability is
calculated by calculating probability of an item belonging to
a specific class with respect to the K closest points. See Table
V which shows the nearest five points to a point in UD dataset
from Iris dataset. A class is assigned to the unlabelled point
based on the highest sum of probability see table IV. The
probabilistic approach assigns probability to all points. For
labelled points it assigns 1 to the labelled class while for
unlabelled points it assigns probability by using the k nearest
neighbours from TR dataset. The idea is to predict the class
of unlabelled points from UD dataset and then add them to
the main training set TR. The new extended training set ETR
which is n + m observations, is used to predict class of a test
set TS. Probabilistic approach is followed to predict the class
of test set. We expect that the accuracy of prediction based on
extended training set ETR to be the same or higher than the
accuracy based on initial training set TR with n observations.
You can see from table V that the nearest points for the
unlabelled point is either of class Versicolor or Virginica. The
probability of this point belonging to each class is given in
table IV. As the probability of this unlabelled point for class
Versicolor is the highest, the unlabelled point is classified as
class Versicolor. We classify all unallocated points in the same
way. The UD dataset is then added to the training set TR along
with the newly predicted class. This method also calculates
the optimum value of k based on the maximum value of the
difference in means of the average accuracy before and after
the unlabelled observations are added.



TABLE II
OPTIMUM K SELECTION

K Accuracy Before  Accuracy After  Difference
19 0.5261808 0.5234818 -0.0026991
18  0.5238866 0.5213225 -0.0025641
17 0.5214575 0.5202429 -0.0012146
16 0.5186235 0.5191633 0.0005398
15 0.5180837 0.5194332 0.0013495
14 0.5167341 0.5168691 0.000135

13 0.5161943 0.5160594 -0.000135

12 0.5164642 0.51417 -0.0022942
11 0.5109312 0.51417 0.0032389
10 0.5068826 0.5063428 -0.0005398
9 0.5040486 0.5024291 -0.0016194
8 0.5051282 0.497031 -0.0080972
7 0.494197 0.4867746 -0.0074224
6 0.4824561 0.4808367 -0.0016194
5 0.468691 0.4659919 -0.0026991

TABLE III

COMPARISON OF SELF-TRAINED KNN AND PROBABILISTIC APPROACH

-IRIS DATASET

Self-training kNN Probabilistic Approach

No

P-Value t-test p-Value t-test
TD =15
UD = 20 0.7837 -0.27707 0.03607 -2.1982
TD =10
UD = 15 0.1469 -1.4904 0.0000009 -6.1904
TD =25
UD = 25 0.4385 -0.78551 0.1094 -1.6515

1
Pr(Y = j|X = o) = ;- max( > Pr(y; =j)) (6)
i€No

A. Opimal K

The method calculates optimal k by finding the maximum
value of the difference in means of the prediction accuracy
before and after unlabelled data points are added. If AB
was accuracy before and AA was accuracy after adding the
unlabelled points, the probabilistic approach will calculate k
as per below.

k = max(AB — AA) @)

The difference in mean of accuracy before and after the
addition of unlabelled points is also significant. The self-
training kNN approach shows almost no improvement in
difference of means, while the Probabilistic approach shows a
considerable improvement. The results of t-test and p-values
based on accuracy from 30 random training set TR and ETR
dataset is given in table I

Table II shows optimal k value selection from a snapshot of
heart disease dataset. The algorithm converges by selecting k
with the highest difference in accuracy. Algorithm starts with
K= 3 and increases by 1 in each iteration till it reaches k=30.
Optimal k is selected from the list of 27 available values.

p — value = 0.03607 )
t = —2.1982 )

This method performs much better than the kNN approach
with respect to prediction on TR dataset and also on the ETR
dataset. The average accuracy of this approach is higher than
the average accuracy of the KNN approach. Figure 2 shows a
distribution of 30 different iterations of random TR and UD
datasets, each of them with the same number of observations.
The Paired t-test and p-value using probabilistic approach is
also given. You can see that the results are significant. This
signifies that the method not only let you add the unlabelled
points to enrich your training set but also uses the data points
to improve average accuracy of prediction.

Accuracy

Fig. 2. Accuracy before and after - Probabilistic Approach, Iris dataset

Tables III shows a comparision of significance of results
of average accuracy of prediction by self-trained kNN and
Probabilistic nearest neighbours model.

Accuracy

No of lterations

Fig. 3. Accuracy before and after - self-training kNN, Heart Disease dataset

VI. HEART DISEASE DATASET

To validate and compare our approach to labelling unla-
belled data and prediction to kNN self-training, we have tested
our approach on heart disease dataset also known as cleveland
dataset. The data was collected by V.A. Medical Center, Long
Beach and Cleveland Clinic Foundation. The dataset has 14
attributes. The task is to detect the presence of heart disease in
the patient. It is integer valued from O showing no presence to
3 showing presence of heart disease. The dataset is divided



TABLE IV
FIRST UNLABELLED DATA POINT

Sepal Length ~ Sepal Width ~ Petal Length

Petal Width

Prb Versicolor  Prb Sethosa  Prb Verginica

7 3.2 4.7 1.4 0.6 0 0.4
TABLE V
FIVE NEAREST POINT TO THE FIRST UNLABELLED POINT

Sepal Length ~ Sepal Width ~ Petal Length ~ Petal Width  Class Prb Versicolor ~ Prb Sethosa  Prb Verginica  Distance
6.8 2.8 4.8 1.4 versicolor 1 0 0 0.4583
6.3 2.7 49 1.8 virginica 0 0 1 0.9695
6.5 2.8 4.6 1.5 versicolor 1 0 0 0.6557
6.1 3 4.6 1.4 versicolor 1 0 0 0.9274
6.9 3.1 5.4 2.1 virginica 0 0 1 1

Accuracy

No of lterations

Fig. 4. Accuracy before and after - pNN, Heart Disease dataset

in to three datasets i.e. TD, UD and TS. The results of
kNN self-training and Probabilistic approach are shown in the
Fiqure 3 and Figure 4 respectively. Difference of means, p-
value and paired t-test results are also shown in below. You
can see from the results that Probabilistic return better and
improved results. We have not restricted our self to only this
two datasets but have applied this approach to other datasets,
while some datasets shows major improvement in training
dataset enrichment others have noticeable improvements. In all
experiments we conducted, we have witnessed improvement
of probabilistic approach on self-training kNN.
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