Kernel Optimization

Enrique Anaya Bovio

April 25, 2018

Abstract: The kernel is a computer program that has complete control over the operating
system. It handles the input/output requests and translates them into data-processing instructions
for the CPU. It handles not only the memory, but also peripherals.

The kernel controls the tasks that are managed in the running system, some of these are running
processes, hardware management and handling interrupts, in the kernel space. On the other hand,
the user performs in the user space. This separation helps to prevent data interfering that can
cause instability and slowness, or worse, malfunctioning application programs that can crash the
entire operating system.

The process scheduler decides which is the next task to run. In the following project we analyzed
the behavior of the scheduler changing the default value of the runtime scheduling, this value is
950000us for the scheduler real time running variable. According to this, 5% of the CPU time is
reserved for processes that are not running under a realtime or deadline scheduling policy. On this
project, this value specifies how much of the period time could be used by real-time and deadline
scheduled processes on the system.

1. Introduction

The kernel controls the tasks that are managed in the running system, in the kernel space, some
of these are running processes, hardware management and handling interrupts. The process sched-
uler is one of the most important components in a multitasking operating system, it is responsible
to use the system resources in the best way possible and guarantee the execution of multiple tasks
simultaneously.

A typical real-time task is composed by a repetition of computation phases that are activated
on a periodic fashion. The usage of a real-time task is defined by the ratio between its WCET and
its period, and represents the part of CPU time needed to execute the task.

In the following project we will analyze the behavior of scheduler changing the default value of
run time scheduling, in order to understand the quantity of megabits per second depending on the
microseconds specified.

2. Theorical Framework

2.1 The Kernel

The kernel is the central module of an operating system. It is the part of the operating system
that loads first, and it remains in main memory. The kernel code is usually loaded into a protected
area of memory to prevent it from being overwritten by programs or other parts of the operating
system.

The kernel is responsible for memory management, process and task management, and disk
management. The kernel connects the system hardware to the application software.

2.2 The Scheduler



The scheduler is in charge of keeping busy the CPUs in the system. The Linux scheduler im-
plements a number of scheduling policies, which determines how long a thread runs on a particular
CPU core and when it runs.

The scheduling policies are divided into two major categories:

1. Realtime policies:

e SCHED FIFO
e SCHED RR

2. Normal policies:

e SCHED OTHER
e SCHED BATCH
e SCHED IDLE

For this project we are focused to analyze just the behavior of the realtime policies by changing
parameters in /proc/sys/kernel/sched rt period us.

2.2.1 Realtime scheduling policies

Normal threads are scheduled after the real-time threads had been scheduled. The realtime
policies are used for time-critical tasks that must have complete without any interruption.

SCHED _FIFO

This policy is also referred to as static priority scheduling, because it defines a fixed priority
(between 1 and 99) for each thread. The scheduler scans a list of SCHED FIFO threads in
priority order and schedules the highest priority thread that is ready to run. This thread runs
until it blocks, exits, or is preempted by a higher priority thread that is ready to run.

Even the lowest priority realtime thread will be scheduled ahead of any thread with a non-
realtime policy; if only one realtime thread exists, the SCHED FIFO priority value does not
matter.

SCHED RR

A round-robin variant of the SCHED _FIFO policy. SCHED RR threads are also given a fixed
priority between 1 and 99. However, threads with the same priority are scheduled round-robin style
within a certain quantum, or time slice. The sched rr get interval(2) system call returns the
value of the time slice, but the duration of the time slice cannot be set by a user. This policy is
useful if you need multiple thread to run at the same priority

2.2.1.1 SCHED _FIFO policy

In the Linux kernel, the SCHED FIFO policy includes a bandwidth cap mechanism. This
protects realtime application programmers from realtime tasks that might monopolize the CPU.
This mechanism can be adjusted through the following /proc file system parameters:

/proc/sys/kernel/sched rt period us

Defines the time period to be considered one hundred percent of CPU bandwidth, in microsec-
onds ("us’ being the closest equivalent to ’us’ in plain text). The default value is 1000000us, or 1
second.

/proc/sys/kernel/sched rt runtime us

Defines the time period to be devoted to running realtime threads, in microseconds ('us’ being
the closest equivalent to 'us’ in plain text). The default value is 950000us, or 0.95 seconds.

3. Objectives

e Make a kernel change on scheduler/memory managment and measure the performance impact
using the phoronix benchmark tools.

e Analyze and compare the changes in AIO Stress according to the increasement of microsec-
onds.

e Understand and learn about realtime scheduling.



The need to learn about how the Linux kernel schedulers works, primarily to make an analysis
of the changes to be made in the values of this. Also understand the meaning of the values that we
will change and the relationship between the microseconds (run time) and the AIO Stress average.

The default value of sched _rt_runtime us is 950000us (0.95 seconds). According to this, 5% of
the CPU time is reserved for processes that are not running under a realtime or deadline scheduling
policy; this value specifies how much of the period time could be used by real-time and deadline
scheduled processes on the system. The value can range from -1 (that makes the run-time the
same as the period) to INT MAX-1, making the run-time the same as the period there’s no CPU

4. Justification

5. Development

time set aside for non-realtime processes.

5.1 System Specifications

Processor: Intel Core i7-4500U @ 3.00GHz (4 cores)
Memory: 2 x 4096 MB DDR3-1600MHz

Disk: 1000GB Western Digital WD10JPVX-75]

Network: Realtek RTL8101/2/6E + Qualcomm Atheros QCA9565 / AR9565
Motherboard: Dell 03VVKX

Chipset: Intel Haswell-UTL DRAM

OS: Ubuntu 16.04

Kernel: 4.4.0-43-generic (x86_ 64)

Compiler: GCC 5.4.0 20160609Motherboard: Dell 03VVKX
Display Server: X Server 1.18.4

Display Driver: Intel 2.99.917

File-System: ext4



1,000,000 111.06 mb/s 0.55 0.86%
950,000 93.71 mb/s 4.23 11.08%
900,000 108.6 mb/s 1.54 2.46%
800,000 105.89 mb/s 1.19 1.95%
700,000 106.84 mb/s 1.1 1.78%
600,000 104.71 mb/s 1.83 3.03%
500,000 95.76 mb/s 5.21 13.32%
400,000 101.25 mb/s 1.51 2.99%
300,000 103.39 mb/s 1.58 2.64%
200,000 103.13 mb/s 1.29 217%
100,000 94.87 mb/s 3.34 8.64%

Figure 1: Test results by changing the microseconds.
In Figure 1 the test results are displayed, including standard error and standard deviation as
parameter to support the precision of the AIO Stress. The table compares the default value
(950,000 microseconds) with the performance of different values that were defined from 100,000 to
1,000,000 microseconds with a difference of 100,000 between each different test.

112
1,000,000

110

900,000
108

700,000

800,000

600,000

300,000

102

AIO STRESS (MB/S)

500,000

100,000

950,000

0 100,000 200,000 300,000 400,000 500,000 600,000 700,000 800,000 900,000 1,000,000 1,100,000

MICROSECONDS

Figure 2: Relation between microseconds and AIO Stress.
The Figure 2 shows the results between the relation of Microseconds and AIO Stress. Thanks to
the graph, we can see that the AIO Stress varies depending on the values defined. In Figure 3,
it is interesting that the values specified that had a lower AIO Stress are the ones that have the
higher standard error.



500,000

950,000

100,000

STANDARD ERROR

300,000

400,000 900,000

200,000 800,000

1,000,000

0 100,000 200,000 300,000 400,000 500,000 600,000 700,000 800,000 900,000 1,000,000 1,100,000

MICROSECONDS

Figure 3: Relation between microseconds and standard error.

Conclusion

With the realization of this project that was focused on research and analysis of results, it was
obtained, among other things, the better understanding of the use and importance of a scheduler
within the kernel of a computer. Although this is the essential center of an operating system,
which provides the most basic services for the proper functioning, it cannot take all the credit. On
the other hand, there is the Shell, which is the most external part of an operating system, which
interacts with the commands provided by the user. The role of the scheduler in these two elements
of the OS is also very important, it is responsible for keeping busy the CPU of the system, it is a
small part of the kernel, but it is the one that coordinates the fluidity of the processes that occur
in the system by the user requests through the Shell.

But with this project we can realize something else, the scheduler, with all the importance
it has within the operating system, can be improved because it provides configuration variables
that are available so that a user can modify them and achieve an improvement in their OS. In the
making of this report we learned to modify these variables to achieve a change in the performance
of the computer and, with it, an optimization in it.

In the end, a lot was learned, but there is more: the developer of an operating system. External
to the practice, unconsciously in the end, those people who are dedicated to carry this out are
more appreciate. It takes a lot of research and some basic knowledge about the operating system
to only modify a variable given by them. Carrying out an entire operating system requires a lot
of dedication and an excellent work team. There is much that can be drawn from this report and
it is not just the numbers.



References

Red Hat. (s.f.). CPU Scheduling. Retrieved from: https://access.redhat.com/documentation/enUS/
Red Hat Enterprise Linux/6/html/Performance Tuning Guide/s-cpu-scheduler.html

Silberschatz A, Galvin P, Gagne G. (2012). Operating System Concepts. John Wiley & Son,
Inc. Ninth Edition.

Bladernr. (2017). PhoronixTestSuite. Retrieved from: https://wiki.ubuntu.com/PhoronixTestSuite

Bovet D, Cesati M. (2005). Understanding the Linux Kernel. O’Reilly Media, Inc. Third
Edition.



