
A Review on Covert Techniques
Luis Barroso

Department of Computer Science
Faculty of Sciences
University of Porto

Marcelo Santos
Department of Computer Science

Faculty of Sciences
University of Porto

Abstract—Due to the widespread adoption of the internet and
its services, protocols have been established and new ones arise
every year. Either for securing connections, ciphering information
or service authentication, protocols place an important part
in network communications. The TCP/IP has become one of
the ubiquitous protocol suites for secure communication, and
therefore, a desirable target for covert information encapsulation.
In this article, we will discuss the art of unauthorized data
transfer - covert techniques - for data encapsulation in protocol
data packets, emphasizing headers fields manipulation.

I. INTRODUCTION

Throughout the years, network transmissions have become
more than a local communication between two or more
computers. Communications are now, more then ever, spread
through large geographical ranges over the Internet by either
services or single users. The large amount of data transferred
every day imposed the need for protocols to ensure integrity
and privacy of such traffic. Covert techniques appeared as an
exploit to those protocols.

There was always a need for secret communications, either
by corporations trying to protect their latest products or
governmental agencies exchanging classified information.

Covert communications appear in scenarios of hidden com-
munication. Suppose a situation of corporate espionage or a
journalist wishing to send secret information through censor-
ship channels. Some agencies restrict information exchange
using external means, such as pen drives or applications such
as skype and it is in this scenario that covert techniques appear
the most.

Covert channels perception was originally acquainted in
[3], although newer definitions have now arisen. A covert
channel can be defined as a mean to transfer information
hidden in a communication channel without any awareness of
such transmission. Contrary to criptography - where we wish
to hide the content of the communication - covert techniques
aim to hide the very existence of such communication. Some-
times, a covert channel can be defined as a type of network
steganography. However, they are not the same, and so it is
important to distinguish them. While steganography is defined
as the method to conceal the fact that a communication is being
made, for instance hiding content in an audio, video or text
file, a covert channel requires exploiting a protocol in order
to send hidden messages, for example, using TCP/IP optional
header bits to send a covered message. [8]

To further understand the content of this paper, we must
also describe overt channels. An overt channel is defined as

an open communication path, within a computer system or
network, designed for transferring authorized data.

In the following sections we will present and analyze a set
of covert techniques and some known applications, sections
II and III, respectively . In section IV, we will mention some
countermeasures in order to protect a system from potentially
harmful covert channels usage.

II. COVERT TECHNIQUES

In this section we will highlight some techniques of how
undisclosed communications can be embedded in overt chan-
nels. Only a few examples will be exposed, and its selection
was based on their usage and exploit frequency.

A. Unused Header Bits

By exploiting protocols, such as TCP/IP, it is possible to
encode a covert channel using reserved or unused bits of
their headers, as proven in [6]. If there is no confirmation
on the receiver or the protocol specifications do not impose
explicit values, hidden data can be transmitted, (e.g. in ”type of
service” field of the IP header). In figure 1 we can see TCP/IP
header and their exploitable fields, marked as underlined.

Fig. 1. TCP/IP Header Structure (from [5])

Another possible exploit regards padding bits. Again, if the
no specific value is imposed for padding, information can be
covert within those bits.

B. Optional Header Fields

In spite of the usage of predefined header extensions regard-
ing discretionary information transport on requisition, several
protocols consent unheralded data to be carried in header



extensions in order to augment the proficiency of protocols.
One simple example is to covert masked data as an IP address
in route record option.

C. Semantic Overloading of Header Fields

A different approach regarding covert techniques is the
semantic overloading. It consists of exploiting syntactic varia-
tions of the overt channel to encode covert data whilst the
channel is maintained semantically identical. For example,
hidden content can be encoded using TCP sequence numbers
in TCP header. In order to do it, the client chooses the ISN
(Initial Sequence Number), and it should be carefully chosen
to prevent new incarnations sequence numbers to overlap with
the ISNs previous ones. One example of a covert channel
created in these circumstances is the use of each ISNs most
significant byte, while enforcing the remainders to be set as
zero , as proven in [8]. Higher layer protocols, mainly text-
based ones, like Hypertext Transfer Protocol (HTTP), offer
further opportunities. By simply varying the use of upper and
lower case, or the amount of spaces interleaving words, covert
channel can be created.

D. Packet and Message Sequence Timing

Another technique relies on sequence timing. To establish
a covert channel, in every time interval the sender adjusts its
packet rate, while on the receiver’s side, in order to decode the
concealed data, he needs to measure the rate of the packets in
each time interval. However, packet timing channels required
synchronization mechanisms at both, sender and receiver sides,
in order to alter the packet rate and obtain proper readings at
the destination.

E. Payload Tunneling

This technique consists of using the payload tunneling
one protocol into another. The major goal of this approach
is to bypass firewalls responsible for restraining outgoing
transmissions to a brief set of authorized application protocols,
such as HTTP.

Such methods can even be applied to Domain Name Server
(DNS), tunneling information through the protocol. In this
case, the client would request a name resolutions for the
host in the form of host.covertserver.com, where
covertserver.com would be a modified DNS server par-
ticipating in the covert channel, and host would be encoded
covert data. All the covert information would be sent from the
DNS server to the client in the DNS responses as text records.

III. APPLICATIONS

In this section we cover some practical implementations that
successfully transmitted data in a covert channel exploitation.

A. Covert Communication with skype

Skype is currently one of the most used P2P communication
systems with a number of users of around 35 million [9].
Using the IP protocol, skype communication is made in
an high cryptographic manner. Such communication aims to
guarantee privacy for skype users, but it also covers said

communication from firewalls as they usually do not verify
ciphered contents and therefore creates an ideal ambient for
covert communication.

Skype uses the UDP protocol for communications and, as
as many other protocols, it is susceptible to covert techniques,
such as network covert storage channels through packet field
manipulation.

In [4], the authors successfully used skype’s 70 bit packets,
that do not carry speech, to conceal communications success-
fully. Such exploit is due to skype’s method of transmitting
data. Even though no dialog is being performed, like text or
audio communication, skype continuously send data packets
during the session time, as explained in [9].

B. Covert Communication in Social Networks

With facebook’s acceptance and usage spreading worldwide,
it became a craved target for covert channels.

Such exploitation was performed in [7]. In this article, the
authors have successfully implemented means to use social
networks as a pipe for covert communications, specifically
targeting facebook.

The authors created an application, named FaceCat which
operates based on users facebook accounts. Firstly, the soft-
ware reaches for long-term cookies stored in cache. After
successfully retrieved said cookies, the software starts to
operate as an authenticated facebook user.

Fig. 2. FaceCat operation method (from [7])

By manipulating cookies, a TCP session is established
between the master node wall, the ”attacker”, and unrelated
account walls, the ”victims”. The master node writes its own
cookie on his wall, and awaits for connections. FaceCat is now
able to read the cookie and, using a method, which authors
called ”pass-the-cookie”, gain the ability to write on master’s
wall.

Communications works using Base64 encoding as well
as sequence numbers. The authors choose facebook’s mobile
interface as it was easier to parse and obtain the encoded
messages and use PoisonIvy as a Remote Administration Tool
(RAT), with the purpose of interpreting concealed data.

C. Covert Communication in TCP/IP

We must start this discussion by firstly introducing some
concepts regarding TCP/IP. TCP/IP is a computer networking



model and a set of communication protocols widely used on
the Internet. It is composed by the TCP protocol for reliable
communication and IP protocol for routing functions. The
protocol’s header is the combination of both, TCP and IP.

In [6], Craig H. Rowland successfully implemented undis-
closed communications using TCP/IP packet headers, adopting
three different approaches.

a) Manipulation of the IP Identification Field: TCP/IP
uses the IP identification field to reassemble packet ordering
at the destination node. If - by some reason - a packet was to be
lost along the way, the destination router would be aware of the
lack of such packet and could not reconstruct data accurately
until a retransmission of the packet would be received. By
using a simple method of placing the ASCII representation
of the characters he wished to encode in the identification
field, Rowland managed to pass the word ”HELLO” hidden,
being subsequently reconstructed at the destination node. This
method consists of having the client host to build a packet
with the correct destination host, encoded IP ID field and data
regarding the source host. The remote host, while listening
on a passive socket, receives the packet and decodes the
information.

Although effective, this implementation is easily detectable
by firewalls and there is a high probability of losing data due to
the need of packet overwriting by routers (TTL for example).

b) Initial Sequence Number Field: The second approach
taken by the author consists in modifying the Initial Sequence
Number Field. This field is used in the three-way handshake
implemented by TCP in order to establish a reliable protocol
negotiation with a remote server. It comes as an ideal field
to conceal communications as it has a reserved 32 bit size.
As in the previous example, the author encapsulates ASCII
coding that refer to a given character in this field. They define
the communication as a synchronized communication and
encapsulate the ASCII code, taking in account the generation
of more realistic sequence numbers through divisions.

c) The TCP Acknowledge Sequence Number Field
”Bounce”: Finally, the author refers to a third and last method
entitled as The TCP Acknowledge Sequence Number Field
”Bounce”. In this method, the author uses basic IP spoofing
(packet manipulation in order to forge the sender IP address)
and bouncing technique (using IP spoofing, a packet is sent to
a given server that then replies with an ACK/SYN with ISN +
1). Basically, a packet is created with forged source IP address,
port, destination IP address (the target system), destination
port and a TCP SYN number forget with the data they wish
to transmit. Then, it is sent to a bounce server that receives
the packet, increments ISN by one number and replies to the
forget IP address in the packet. The receiver system expects
communication from the bounce server and when received, it
interprets the ISN number minus one and therefore the ASCII
value of the character.

IV. COUNTERMEASURES

Covert channels can be created in many different ways, as
seen previously in section II, therefore the first action against

these channels is to identify them. Such identification can be
obtained using ad hoc strategies or based on formal methods,
either in single host systems or network protocols, as referred
and explored in [8].

Covert channels existence is mostly due to imperfections,
namely design oversights and intrinsic system flaws. Although
a covert channel generated from oversights can be revised
once noticed, those stemmed from system weaknesses imply
remodeling the system in order to eliminate them. Hence,
covert channels should be preferably detected and disposed
throughout the design phase.

If a covert channel cannot be disposed, in case it was
not correctly identified during the design phase and posterior
measures would imply system’s inefficiency, the capacity of
the channel should be reduced. Such reduction depends on the
exposure of the system, since restraining the capacity means
delaying the system mechanisms or enforcing noise, leading
to aggravated performance.

If a covert channel cannot be retained it should be audited,
imposing some level of prevention to channel’s usage. When-
ever covert channel’s capacity is too low to be considered
relevant, or the channel cannot be audited, it should be doc-
umented, allowing people to know its existence and possible
hazards.

A. Eliminating Covert Channels
In order to eliminate covert channels the general approaches

are:
• Host Security
• Network Security
• Traffic Normalization
Despite the existence of different procedures, regarding

covert channels, they cannot/shall not be replaced with each
other, since their applicability and outcome differ.

While host security may prevent the channel’s exploitation
in some situations, protecting hosts from directed attacks, it
cannot remove covert network channels. For example, and
citing from [8], If hosts are secured from being hacked, hackers
cannot exploit covert channels. However, this does not protect
against data ex-filtration by insiders, nor does it solve the
covert channel problem in other scenarios such as censorship
circumvention.

However, with network security is is possible to resist to
tunneling channels by blocking susceptible protocols. One
example, shown in [8], is the firewall blockage to Internet
Control Message Protocol (ICMP). Nonetheless, there are
protocols in the Internet that cannot be blocked, given their
importance. In these cases the action would be replacing
them by improved versions with limited occurrences of covert
channels.

In regard to traffic normalization, by normalizing protocol
headers, header extensions and padding, can mitigate simple
storage covert channels, as demonstrated in [1].

B. Limiting Covert Channel Capacity
As aforementioned, when a covert channel cannot be elim-

inated, the consequent procedure is limiting its capacity.



Such limitation can achieved in several different manners,
like limiting the allowed host-to-host connections, setting a
fixed size for packets, introducing noise to the channel by
inserting dummy packets in the network or buffering and
delaying packets, among others proposed in [8], [2]. Despite
being effective to specific exploitation, some methods are only
applicable in closed networks, due to the inherent efficiency
reduction.

C. Auditing Covert Channel

In order to audit effectively a channel, one needs to know
its standard behavior to correctly identify when it is being
exploited or used in an irregular manner. However, some
variations can, sometimes be hard to identify, when the covert
channel is identical to the regular use of the protocol.

Some covert channels are based on nonstandard behavior of
protocols, such as using reserved bits and padding as mean to
communicate, thus making it easy to identify such channels,
since some protocols mandate specific values to be filled in
these places.

Depending on the type on exploit performed, there are
several proposals to audit covert channels, by analyzing traffic
rate over time changes or inspecting packet inter-arrival time
distribution. Further methods and details can be seen in [8].

V. CONCLUSION

As covert techniques are fairly new, there is still some work
to be done regarding it’s detection and prevention. As long as
new protocols continue to burst, new covert techniques are
sure to tag along. Since countermeasures are still rough, we
strongly believe that covert techniques have all the means
to continue growing and so, data confidentiallity may be at
risk. Furthermore some investment should be done in security
software such as firewalls or anti-virus in order to be able to
analyse network traffic and protocol integrity and effectively
prevent unauthorized data transmitions.

REFERENCES

[1] Mark Handley, Vern Paxson, and Christian Kreibich. Network intrusion
detection: Evasion, traffic normalization, and end-to-end protocol seman-
tics. In USENIX Security Symposium, pages 115–131, 2001.

[2] Myong H Kang, Ira S Moskowitz, and Stanley Chincheck. The pump:
A decade of covert fun. In Computer Security Applications Conference,
21st Annual, pages 7–pp. IEEE, 2005.

[3] Butler W. Lampson. A note on the confinement problem. Commun. ACM,
16(10):613–615, 1973.

[4] Wojciech Mazurczyk, Maciej Karas, and Krzysztof Szczypiorski. Skyde:
A skype-based steganographic method. arXiv preprint arXiv:1301.3632,
2013.

[5] Asst Prof Dr Ziyad Tariq Mustafa and Authman Waleed Khalid. Packet
steganography using ip id.

[6] Craig H. Rowland. Covert channels in the tcp/ip protocol suite. First
Monday, 2(5), 1997.

[7] Jose Selvi. Covert channels over social networks. In SANS Institute
Reading Room site. SANS Institute, 2012.

[8] Sebastian Zander, Grenville Armitage, and Philip Branch. A survey
of covert channels and countermeasures in computer network protocols.
Communications Surveys & Tutorials, IEEE, 9(3):44–57, 2007.

[9] Jiangtao Zhai, Mingqian Wang, Guangjie Liu, and Yuewei Dai. Skylen:
a skype-based length covert channel.


